Tìm a,b \(\in\)Z sao cho (a+b) . (a-b)= 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Linh cảm của chúa Pain đề sai :)
đề phải là tìm giá trị lớn nhất .
a, \(a=\frac{1}{x^2+5}\)
\(x^2+5\ge5\)
mẫu : \(\ge\rightarrow\le\)
\(\Rightarrow A\le\frac{1}{5}"="\Leftrightarrow x=0\)
b,
\(b=\frac{\left(x+y-z\right)^2.2018}{a^4+b^4+2018}\)
\(a^4\ge0."="\Leftrightarrow a=0\)
\(b^4\ge0"="\Leftrightarrow b=0\)
\(a^4+b^4+2018\ge2018\)
mẫu \(\ge\rightarrow\le\)
\(\Rightarrow B\le\frac{\left(x+y-z\right)^2.2018}{2018}\Rightarrow B\le0\le\left(x+y-z\right)^2\) ( rút gọn 2018)
\(\Rightarrow B\le0\)
P/s : Chém bừa

\(\frac{2018}{ab+2018a+2018}+\frac{b}{bc+a+2018}+\frac{c}{ac+c+1}\)
\(a.b.c=2018\Rightarrow a,b,c\ne0\)
Ta có \(\frac{2018}{ab+2018a+2018}\Rightarrow\frac{2018}{b+2018+bc}\)
\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{2018+bc+b}\)
\(\Rightarrow S=\frac{2018}{b+2018+bc}+\frac{b}{bc+b+2018}+\frac{bc}{2018+bc+b}=\frac{2018+b+bc}{b+2018+bc}=1\)
để nghĩ tiếp
làm tiếp
\(\frac{2013x+1}{2014x-2014}=\frac{2013\left(x-1\right)+2014}{2014\left(x-1\right)}=\frac{2013}{2014}+\frac{1}{x-1}\)
\(B_{max}\Leftrightarrow\frac{1}{x-1}max\)
+) Nếu x >1 thì x-1 >0 \(\Rightarrow\frac{1}{x-1}>0\)
+) Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)
Xét x > 1 ta có
\(\frac{1}{x-1}max\Rightarrow x-1\)là số nguyên dương nhỏ nhất
\(\Rightarrow x-1=1\Rightarrow x=2\)
Vậy \(Bmax=1\frac{2018}{2019}\Leftrightarrow x=2\)

1)Cho A=111...1(2n chữ số 1),B=111...1(n+1 chữ số 1), C=666...6(chữ số 6).C/m:A+B+C+8 là số chính phương
2)C?m:Các số sau là các số chính phương
a)A=999...9000...025(n chữ số 9 và n chữ số 0)
b)B=999...9000...01(n chữ số 9 và n chữ số 0)
c)C=444...4888...89(n chữ số 4 và n chữ số 8)
d)D=111...1222...25(n chữ số 1 và n+1 chữ số 2)
3)Tìm số chính phương n để:n^2-2006 là số chính phương