CM (a^2+1)(b^2+1)(c^2+1) là 1số chính phươnh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 13^2 -5^2=169-25=144=12^2
b) 1^3+2^3+3^3+4^3=1+8+27+64=100=10^2
\(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)\ge0\)
\(\Leftrightarrow m+1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(B=\left(x_1+x_2\right)^2-2x_1x_2+7\)
\(B=\left(2m-2\right)^2-2\left(m^2-3m\right)+7\)
\(B=2m^2-2m+11\)
\(B=2m\left(m-1\right)+11\ge11\)
\(B_{min}=11\) khi \(m=1\)
Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca
=> a + b + c = ab + bc + ca
<=> a + b + c - ab - bc - ca = 0
<=> a + b + c - ab - bc - ac + abc - 1 = 0
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
<=> (b - 1)(-a + 1 -c + ac) = 0
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0
<=> (a - 1)(b - 1)(c - 1) = 0
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
<=> a = 1 hoặc b = 1 hoặc c = 1
Kết luận
Ta có:
\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự suy ra biểu thức đã cho bằng \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) và là số chính phương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow ab+bc+ca=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(c+a\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)