K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 1 2022

Đường thẳng có dạng: \(y=kx-1\)

Phương trình hoành độ giao điểm: \(x^2+kx-1=0\)

Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=-k\\x_Ax_B=-1\end{matrix}\right.\) \(\Rightarrow x_A^2+x_B^2=k^2+2\)

\(A\left(x_A;kx_A-1\right);B\left(y_B;kx_B-1\right)\)

Ta có: \(OA^2+OB^2=x_A^2+\left(kx_A-1\right)^2+x_B^2+\left(kx_B-1\right)^2\) 

\(=\left(x_A^2+x_B^2\right)\left(k^2+1\right)-2k\left(x_A+x_B\right)+2\)

\(=\left(k^2+2\right)\left(k^2+1\right)-2k.\left(-k\right)+2\)

\(=k^4+5k^2+4\) (1)

\(AB^2=\left(x_A-x_B\right)^2+\left(kx_A-kx_B\right)^2\)

\(=\left(k^2+1\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)

\(=\left(k^2+1\right)\left(k^2+4\right)=k^4+5k^2+4\) (2)

(1);(2) \(\Rightarrow OA^2+OB^2=AB^2\) hay tam giác OAB luôn vuông tại O

NV
20 tháng 4 2023

Pt hoành độ giao điểm (P) và (d):

\(\dfrac{x^2}{2}=mx+\dfrac{1}{2}\Leftrightarrow x^2-2mx-1=0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_M+x_N=2m\\x_Mx_N=-1\end{matrix}\right.\)

Gọi I là trung điểm MN \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_M+x_N}{2}\\y_I=\dfrac{y_M+y_N}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2m}{2}=m\\y_I=\dfrac{m.x_M+\dfrac{1}{2}+m.x_N+\dfrac{1}{2}}{2}=\dfrac{m\left(x_M+x_N\right)+1}{2}=m^2+\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow y_I=x_I^2+\dfrac{1}{2}\)

Hay tập hợp I là parabol có pt: \(y=x^2+\dfrac{1}{2}\)

NV
20 tháng 4 2023

Do \(x_I=m\) mà \(y_I=m^2+\dfrac{1}{2}\) nên \(y_I=x_I^2+\dfrac{1}{2}\) thôi em

17 tháng 11 2017

Đáp án C

17 tháng 4 2020

Mục tiêu -500 sp mong giúp đỡ haha

26 tháng 2 2022

(d) đi qua A(-2;2) <=> 2 = -2a + b (1) 

Hoành độ giao điểm tm pt 

\(\dfrac{1}{2}x^2=ax+b\Leftrightarrow x^2-2ax-2b=0\)

\(\Delta'=a^2-\left(-2b\right)=a^2+2b\) 

Để (P) tiếp xúc (d) \(a^2+2b=0\)(2) 

Từ (1) ; (2) ta có hệ \(\left\{{}\begin{matrix}-2a+b=2\\a^2+2b=0\end{matrix}\right.\)bạn tự giải nhé 

2: Vì (d) có hệ số góc là m nên (d): y=mx+b

Thay x=0 và y=-2 vào (d), ta được:

\(b+0=-2\)

=>b=-2

Vậy: (d); y=mx-2

PTHĐGĐ là:

\(\dfrac{-1}{4}x^2-mx+2=0\)

a=-1/4; b=-m; c=2

Vì ac<0 nên (P) cắt (d) tại hai điểm phân biệt