Biết \(x\inℚ\)
Với \(0< x< 1\).\(CMR:x^n< x\)với \(n\inℕ,N>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co 0^1=0^2=...=0^n=0
1^1=1^2=...=1^n=1
Ta có : \(0^1=0^3=\cdot\cdot\cdot=0^n=0\left(n\ge2\right)\)
\(1^1=1^2=\cdot\cdot\cdot=1^n=1\left(n\ge2\right)\)
Vậy bài toán đã được chứng minh
Xét \(x^n-x=x\left(x^{n-1}-1\right)\)
Vì \(0< x< 1\)
\(\Rightarrow x^{n-1}-1< 0;x>0\)
\(\Rightarrow x^n-x< 0\)
\(\Rightarrow x^n< x\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Vì \(0< x< 1\Rightarrow x^{n-1}< 1\)
\(\Rightarrow1-x^{n-1}>0\)
Xét hiệu \(x-x^n=x\left(1-x^{n-1}\right)>0\)
Nên \(x>x^n\left(đpcm\right)\)
Sau này có gì cứ nhờ Incursion_03 nha. A cũng nhờ bạn ấy suốt ah :P