Hằng đẳng thức:
(x+1)4 + (x-1)4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1. Chỉ áp dụng được khi $x\geq 0$
$x-1=(\sqrt{x}-1)(\sqrt{x}+1)$
2. $x^2-1=(x-1)(x+1)$
3. $x-4=(\sqrt{x}-2)(\sqrt{x}+2)$ (chỉ áp dụng cho $x\geq 0$)
4. $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
5. $x-4\sqrt{x}+4=(\sqrt{x})^2-2.2\sqrt{x}+2^2=(\sqrt{x}-2)^2$
6. $\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2x}{x-1}$
$=\frac{x+2\sqrt{x}+1}{x-1}+\frac{2x}{x-1}=\frac{3x+2\sqrt{x}+1}{x-1}$
`4x^2-1=0`
`<=>(2x-1)(2x+1)=0`
`<=>[(2x-1=0),(2x+1=0):}`
`<=>[(2x=1),(2x=-1):}`
`<=>[(x=1/2),(x=-1/2):}`
Vậy `x=1/2` hoặc `x=-1/2`
\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)
\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{4}\right)^2\)
\(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(-x^3+3x^2-3x+1=\left(-x+1\right)^3\)
\(P=\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\) (Vì: \(x-y=1\))
\(\Leftrightarrow P=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=\left(x^4-y^4\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=x^8-y^8-x^8+y^8+1\)
\(\Leftrightarrow P=1\)
\(\left(x+1\right)^4+\left(x-1\right)^4\)
\(=\left(x+1\right)^2.\left(x+1\right)^2+\left(x-1\right)^2.\left(x-1\right)^2\)
\(=\left(x^2+2x+1\right).\left(x^2+2x+1\right)+\left(x^2-2x+1\right).\left(x^2-2x+1\right)\)
\(=x^4+2x^3+x^2+2x^3+4x^2+2x+x^2+2x+1+x^4-2x^3+x^2-2x^3+4x^2-2x+x^2-2x+1\)
\(=2x^4+12x^2+2\)