K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{x^2+3x+2+64-96\left(x+1\right)}{32\left(x+1\right)}\cdot\dfrac{x+1}{-2\left(x-2\right)}+\dfrac{x^2-3x-1}{3x}\)

\(=\dfrac{x^2+3x+66-96x-96}{32}\cdot\dfrac{-1}{2\left(x-2\right)}+\dfrac{x^2-3x-1}{3x}\)

\(=-\dfrac{x^2-93x-30}{64\left(x-2\right)}+\dfrac{x^2-3x-1}{3x}\)

\(=\dfrac{-3x\left(x^2-93x-30\right)}{192x\left(x-2\right)}+\dfrac{64\left(x-2\right)\left(x^2-3x-1\right)}{192x\left(x-2\right)}\)

\(=\dfrac{-3x^3+279x^2+90x+64\left(x^3-3x^2-x-2x^2+6x+2\right)}{192x\left(x-2\right)}\)

\(=\dfrac{-3x^3+279x^2+90x+64x^3-320x^2+320x+128}{192x\left(x-2\right)}\)

\(=\dfrac{61x^3-41x^2+410x+128}{192x\left(x-2\right)}\)

16 tháng 12 2022

f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)

g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)

h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)

n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)

p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)

m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

23 tháng 12 2021

\(A=\left(\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x+1}{x\left(x+2\right)}-\dfrac{4}{x\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)

\(=\dfrac{x^2+x-2+x^2-x+2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)

\(=\dfrac{2x^2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)

\(=\dfrac{2x\left(x^2-2\right)\left(x-3\right)}{2x\left(x-2\right)\cdot\left(x+2\right)^2}=\dfrac{\left(x^2-2\right)\left(x-3\right)}{\left(x-2\right)\left(x+2\right)^2}\)

26 tháng 10 2023

6:

a: ĐKXĐ: x<>0

\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)

b: ĐKXĐ: x<>1

\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)

\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)

c: ĐKXĐ: x<>-2

\(\dfrac{x^2+4x+4}{2x+4}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)

\(=\dfrac{x+2}{2}\)

d: ĐKXĐ: x<>-2

\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)

\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)

e: ĐKXĐ: x<>-y

\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)

g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)

7:

a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)

\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)

b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)

\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)

c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)

d:

\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)

\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)

ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)

a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)

\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)

\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)

\(=\dfrac{3x}{x-2}\)

b) Để A nguyên thì \(3x⋮x-2\)

\(\Leftrightarrow3x-6+6⋮x-2\)

mà \(3x-6⋮x-2\)

nên \(6⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(6\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)

 

a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)

b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)

\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)

31 tháng 12 2021

\(A=\dfrac{3x}{x-1}+\dfrac{2}{x+1}+\dfrac{3-3x-2x^2}{x^2-1}.\) \(\left(ĐKXĐ:x\ne1;x\ne-1\right).\)

\(A=\dfrac{3x\left(x+1\right)+2\left(x-1\right)+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)

\(A=\dfrac{3x^2+3x+2x-2+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)

\(A=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}.\)