K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)

\(\Rightarrow A\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)

b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)

Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)

\(\Rightarrow B\le3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)

3 tháng 10 2018

với mọi x thì (2x+1/4)4>=0 (lớn  hơn hoặc bằng )

A=(2x+1/4)4-1>=-1

để A đạt GTNN thì (2x+1/4)4=0

2x+1/4=0 =>x=-1/8

21 tháng 8 2018

Ta có:\(2x-2x^2-5=-\left(2x^2-2x+5\right)\)

\(=-\left[2\left(x^2-x+\dfrac{5}{2}\right)\right]\)

\(=-\left\{2\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+\dfrac{5}{2}\right]\right\}\)

\(=-\left\{2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\right\}\)

\(=-\left[2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)

Do \(-2\left(x-\dfrac{1}{2}\right)^2\le0\) với \(\forall x\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\) )

\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\) hay \(2x-2x^2-5\le-\dfrac{9}{2}\) (dấu ''='' xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy giá trị lớn nhất của biểu thức \(2x-2x^2-5\)\(-\dfrac{9}{2}\) tại \(x=\dfrac{1}{2}\)

21 tháng 8 2018

A = 2x - 2x2 - 5

=> 2A = -4x2 + 4x - 10

=> 2A = -(4x2 - 4x + 10)

=> 2A = - [(2x)2 - 2.2x + 1] - 9

=> 2A = -(2x - 1)2 -9

Mà: -(2x - 1)2 \(\le\) 0 => -(2x - 1)2 - 9 \(\le\) -9

=> 2A \(\le\) -9

=> A \(\le\) -4,5

Đẳng thức xảy ra khi: -(2x - 1)2 = 0 <=> x = \(\dfrac{1}{2}\)

8 tháng 8 2017

9x2+6x+25= (3x)2+2.3x.1+1-1+25

= (3x+1)2+24

Vì (3x+1)2 luôn > hoặc = 0

Nên (3x+1)2+24 luôn > hoặc =24

Vậy GTNN của 9x2+6x+25 bằng 24 khi (3x+1)2=0

                                                              <=> x= \(\frac{-1}{3}\)

8 tháng 8 2017

Câu GTLN bạn làm tương tự câu tìm giá trị nhỏ nhất khác nhau một chút là tìm GTLN thì đặt dấu - ra ngoài

19 tháng 7 2015

A= X2+5X+25/4-37/4 =(X+5/2)2-37/4 >= -37/4

  

Amin=-37/4

Đạt được khi : X=-5/2

B=-X2+7X+1=-(X2-7X-1)=-(X2+7X+49/4-53/4)=-(X+7/2)2+53/4<=53/4

BMax=53/4

Đạt được khi:X=-7/2

C=2x2+6x=2x2+6x+9/4-9/4=2(x2+3x+9/4)-9/4=2(x+3/2)2-9/4>=-9/4

CMin=-9/4

Đạt được khi:x=-3/2

 

a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)

\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)

\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)

b: \(2x^2-5x+2=0\)

=>(x-2)(2x-1)=0

=>x=1/2

Thay x=1/2 vào P, ta được:

\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)