\left(2.x+3\right)^{2}=121(2.x+3)2=121
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(3x+2)^2=121=11^2=(-11)^2$
$\Rightarrow 3x+2=11$ hoặc $3x+2=-11$
$\Rightarrow x=3$ hoặc $x=\frac{-13}{3}$
Vì $x$ là số tự nhiên nên $x=3$
Tìm số tự nhiên xx thỏa mãn: \left(3.x+2\right)^{2}=121(3.x+2)2=121
\((2x-3)^2=121\\\Rightarrow(2x-3)^2=(\pm11)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=11\\2x-3=-11\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=14\\2x=-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{7;-4\right\}\).
Lời giải:
PT(1)\(\Rightarrow y^2=x-1\Rightarrow x\geq 1\)
Thay $y^2=x-1$ vào PT(2) ta có:
\(x-1+x(x+1)(x+2)(x+3)=121\)
\(\Leftrightarrow x+[x(x+3)][(x+1)(x+2)]=122\)
\(\Leftrightarrow x+(x^2+3x)(x^2+3x+2)=122\)
\(\Leftrightarrow x+(x^2+3x)^2+2(x^2+3x)=122\)
\(\Leftrightarrow x^4+6x^3+11x^2+7x-122=0\)
\(\Leftrightarrow x^3(x-2)+8x^2(x-2)+27x(x-2)+61(x-2)=0\)
\(\Leftrightarrow (x-2)(x^3+8x^2+27x+61)=0\)
Với $x\geq 1$ thì \(x^3+8x^2+27x+61>0\)
Do đó \(x-2=0\Leftrightarrow x=2\) là nghiệm duy nhất.
Thay vào PT đầu tiên \(y^2=x-1=2-1=1\Rightarrow y=\pm 1\)
Vậy \((x,y)=(2,\pm 1)\)
\(\left(4x-1\right)^2-x\left(3-x\right)=121\)
\(\Leftrightarrow16x^2-8x+1-3x+x^2=121\)
\(\Leftrightarrow17x^2-11x-120=0\)
\(\Leftrightarrow17x^2-51x+40x-120=0\)
\(\Leftrightarrow\left(17x^2-51x\right)+\left(40x-120\right)=0\)
\(\Leftrightarrow17x\left(x-3\right)+40\left(x-3\right)=0\)
\(\Leftrightarrow\left(17x+40\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}17x+40=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-40}{17}\\x=3\end{matrix}\right.\)
\(5x^2-x=18\)
\(\Leftrightarrow5x^2-x-18=0\)
\(\Leftrightarrow5x^2-10x+9x-18=0\)
\(\Leftrightarrow\left(5x^2-10x\right)+\left(9x-18\right)=0\)
\(\Leftrightarrow5x\left(x-2\right)+9\left(x-2\right)=0\)
\(\Leftrightarrow\left(5x+9\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+9=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9}{5}\\x=2\end{matrix}\right.\)
\(A=10^3-\left\{-5^3.2^3-11.\left[x^2-5.2^3+\left(121-11^2\right)\right]\right\}\)
\(A=10^3-\left\{\left(-10\right)^3-11.\left[x^2-40\right]\right\}\)
\(A=10^3-\left\{\left(-10\right)^3-11x^2+440\right\}\)
\(A=10^3+10^3+11x^2-440\)
\(A=2000-440+11x^2\)
\(A=1560+11x^2\)
\(\left(1\dfrac{3}{4}-\dfrac{4}{6}\right):\left(1\dfrac{1}{5}+2\dfrac{2}{5}+\dfrac{1}{5}\right)< x< 1\dfrac{1}{5}.1\dfrac{1}{4}+3\dfrac{2}{11}:2\dfrac{3}{121}\)
\(\Leftrightarrow\left(\dfrac{7}{4}-\dfrac{4}{6}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)< x< \dfrac{6}{5}.\dfrac{5}{4}+\dfrac{35}{11}:\dfrac{245}{121}\) \(\Leftrightarrow\left(\dfrac{21}{12}-\dfrac{8}{12}\right):\dfrac{19}{5}< x< \dfrac{3}{2}+\dfrac{35}{11}.\dfrac{121}{245}\) \(\Leftrightarrow\dfrac{13}{12}.\dfrac{5}{19}< x< \dfrac{3}{2}+\dfrac{2}{7}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{21}{14}+\dfrac{4}{14}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{25}{14}\) \(\Leftrightarrow x=1\)a: \(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Đặt \(x^2+2x=t\left(đk:t\ge-1\right).\)
\(\Rightarrow\left(11-t\right)\left(11+t\right)=121\Leftrightarrow121-t^2=121\Leftrightarrow t=0\)
\(\Rightarrow x^2+2x=0\Leftrightarrow\orbr{\begin{cases}-2\\0\end{cases}}\)
Thực ra bài này đặt cho dễ nhìn, ta hoàn toàn có thể ssuy ra mà ko cần đặt ha!
c. \(^{ }\left(2x+3\right)^2=\dfrac{9}{121}\)
=> \(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)
=> 2x +3 = \(\dfrac{3}{11}\) hoặc 2x+3 = \(\dfrac{-3}{11}\)
=> x= \(\dfrac{-15}{11}\) hoặc x = \(\dfrac{-18}{11}\)
d. \(\left(2x-1\right)^3=\dfrac{-8}{27}\)
=> \(\left(2x-1\right)^3=\left(\dfrac{-2}{3}\right)^3\)
=> 2x-1 = \(\dfrac{-2}{3}\)
=> x= \(\dfrac{1}{6}\)
e cảm ơn