cho a,b>0 và a+b=\(\frac{5}{4}\) Tìm gtnn\(\frac{4}{a}\)+\(\frac{1}{4a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 4a + 7b + 10c + \(\frac{4}{a}+\frac{1}{4b}+\frac{1}{9c}\)
P = \(3\left(a+2b+3c\right)+\left(a+\frac{4}{a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{9c}\right)\)
\(\ge3.4+2\sqrt{a.\frac{4}{a}}+2\sqrt{b.\frac{1}{4b}}+2\sqrt{c.\frac{1}{9c}}=\frac{53}{3}\)
Vây GTNN của P là \(\frac{53}{3}\)khi \(a=1;b=\frac{1}{2};c=\frac{1}{3}\)
\(A=2a+\frac{b}{4a}+b^2\)
Mà \(a+b\ge1\Leftrightarrow b\ge1-a\). Suy ra \(A\ge2a+\frac{1-a}{4a}+b^2=2a+\frac{1}{4a}-\frac{1}{4}+b^2=a+\frac{1}{4a}+a+b^2-\frac{1}{4}\)
Mà \(a+b\ge1\Leftrightarrow a\ge1-b\). Suy ra
\(A\ge a+\frac{1}{4a}+b^2-b+\frac{3}{4}=a+\frac{1}{4a}+b^2-b+\frac{1}{4}+\frac{1}{2}\)
Áp dụng bđt Cosi: \(\Rightarrow A\ge2+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\Leftrightarrow A\ge\frac{3}{2}\)
Dấu = xảy ra tại a=b=1/2
Đặt \(x=a+b+2c;y=2a+b+c;z=a+b+3c\left(x,y,z>0\right)\)
Từ đó tính được: \(\hept{\begin{cases}a=z+y-2x\\b=5x-y-3z\\c=z-x\end{cases}}\)
Lúc đó \(A=\frac{4\left(z+y-2x\right)}{x}+\frac{\left(5x-y-3z\right)+3\left(z-x\right)}{y}-\frac{8\left(z-x\right)}{z}\)
\(=\frac{4z+4y}{x}-8+\frac{2x}{y}-1+\frac{8x}{z}-8\)
\(=\left(\frac{4y}{x}+\frac{2x}{y}\right)+\left(\frac{4z}{x}+\frac{8x}{z}\right)-17\)
\(\ge2\sqrt{\frac{4y}{x}.\frac{2x}{y}}+2\sqrt{\frac{4z}{x}.\frac{8x}{z}}-17=12\sqrt{2}-17\)(Theo BĐT Cô - si cho 2 số dương)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{4y}{x}=\frac{2x}{y}\\\frac{4z}{x}=\frac{8x}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\sqrt{2}\\z=x\sqrt{2}=2y\end{cases}}\Leftrightarrow\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}\)
Đặt \(\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}=k\left(k>0\right)\)thì \(\hept{\begin{cases}z=2k\\x=\sqrt{2}k\\y=k\end{cases}}\). Lúc đó \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\)
Vậy \(MinA=12\sqrt{2}-17\), đạt được khi \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\left(k>0\right)\)
Chứng minh bđt phụ: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (1)
Ta có:\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng với mọi \(a,b>0\))
Đặt \(A=\frac{1}{a^2+b^2}+\frac{5}{ab}+ab\)
\(\Rightarrow A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{9}{2ab}+ab\)
Áp dụng bđt (1) ta được: \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{4^2}=\frac{1}{4}\)
Áp dụng bđt Cô-si với \(\frac{9}{2ab}+ab\)ta được: \(\frac{9}{2ab}+ab\ge2\sqrt{\frac{9}{2ab}.ab}=2.\sqrt{\frac{9}{2}}=\sqrt{4.\frac{9}{2}}=\sqrt{18}=3\sqrt{2}\)
\(\Rightarrow A\ge\frac{1}{4}+3\sqrt{2}\)
Vậy \(minA=3\sqrt{2}+\frac{1}{4}\)