Chứng minh phân thức sau luôn có nghĩa: \(\frac{3x-5}{\left(x-1\right)^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại vì nó được đề bài cho nên có nghĩa,k có nghĩa thì lm kiểu đếch j?
\(\Delta=\left(m-2\right)^2+4\left(m+5\right)=m^2-4m+4+4m+20=m^2+24>0\)với mọi m
=> PT (1) luôn có 2 nghiệm PB x1 ; x2
theo Vi-ét ta có : \(\int^{x_1+x_2=m-2}_{x_1x_2=-\left(m+5\right)}\Leftrightarrow x_1x_2=x_1+x_2-3\)
Bạn xem lại Đề nhé ( Nếu m =-5 => x =0 )
Ta có:
\(5\left(x^3-9x\right)=5x^3-45x.\)(1)
\(\left(15-5x\right).\left(-x^2-3x\right)=-15x^2-45x+5x^3+15x^2=5x^3-45x\)(2)
Từ (1)(2) suy ra \(5\left(x^3-9x\right)=\left(15-5x\right)\left(-x-3x\right)\)
\(\Rightarrow\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\)(Điều phải chứng minh)
a/ \(P=\frac{\left(x^2+a\right)\left(1+a\right)a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
b/ Từ phân số rút gọn thì ta thấy P không phụ thuộc vào x và có nghĩa với mọi x.
Ta lại có \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy P không phụ thuộc vào x và có nghĩa với mọi x và a
Để mình đưa công thức tổng quát luôn khỏi mất công bạn đăng câu hỏi cho mệt =.=
Với mọi \(a,n\inℕ^∗\)
Cần chứng minh :
\(\frac{n}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)
Ta có :
\(\frac{1}{a}-\frac{1}{a+n}=\frac{a+n}{a\left(a+n\right)}-\frac{a}{a\left(a+n\right)}=\frac{a+n-a}{a\left(a+n\right)}=\frac{n}{a\left(a+n\right)}\) ( đpcm )
Vậy với mọi \(a,n\inℕ^∗\) thì \(\frac{n}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)
Chúc bạn học tốt ~
Ta có :
\(\frac{1}{x}-\frac{1}{x+2}=\frac{x+2}{x\left(x+2\right)}-\frac{x}{x\left(x+2\right)}=\frac{x+2-x}{x\left(x+2\right)}=\frac{2}{x\left(x+2\right)}\) ( đpcm )
Vậy với mọi \(x\inℕ^∗\) ta luôn có \(\frac{2}{x\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\)
Chúc bạn học tốt ~
\(A=\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)
\(=\frac{x^2\left(1+a+a^2\right)+\left(1+a+a^2\right)}{x^2\left(1-a+a^2\right)+\left(1-a+a^2\right)}\)
\(=\frac{\left(1+a+a^2\right)\left(1+x^2\right)}{\left(1-a+a^2\right)\left(1+x^2\right)}=\frac{1+a+a^2}{1-a+a^2}\) không phụ thuộc vào x
Để đẳng thức luôn có nghĩa thì (x - 1)2 + 2 \(\ne\) 0
mà (x - 1)2 + 2 > 0
=> đẳng thức luôn luôn có nghĩa