Chứng minh: x^2 – 8x +20 > 0 với mọi x
Giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
a) x^2 - 8x + 20
=x2-8x+16+4
=x2-2.x.4+42+4
=(x-4)2+4 >0 với mọi x (vì (x-4)2\(\ge\)0)
b) 4x^2 - 12x + 11
=(2x)2-2.2x.3+9+2
=(2x)2-2.2x.3+32+2
=(2x-3)3+2>0 với mọi x (vì (2x-3)2\(\ge\)0)
\(x^2>=0\) với mọi x
\(8x>=0\) với mọi x
<=> 20<0
Nên P(x) vô nghiệm
a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)
\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
a) Đặt \(A=4x-x^2-5\)
\(-A=x^2-4x+5\)
\(-A=\left(x^2-4x+4\right)+1\)
\(-A=\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\)
\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)
b) Đặt \(B=x^2-2x+5\)
\(B=\left(x^2-2x+1\right)+4\)
\(B=\left(x-1\right)^2+4\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\left(đpcm\right)\)
a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)
b) x2 -2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0 với mọi x (đpcm)
\(A=5-8x-x^2=-x-8x-16+21=-\left(x-4\right)^2+21\le21\)
Chưa thể cm được
\(B=3x^2+3x+7=3x^2+3x+\frac{3}{4}+\frac{25}{4}=3\left(x+\frac{1}{2}\right)^2+\frac{25}{4}\ge\frac{25}{4}>0\)
=> Đpcm
Bài làm :
\(a\text{)A=}5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+21\)
Vì -(x+4)2 ≤ 0 với mọi x
=> -(x+4)2 + 21 ≤ 21
=> Không thể khẳng định được A<0 bạn nhé
\(\text{b)}3x.x+3+7=3x^2+10\)
Vì x2 ≥ 0 với mọi x
=> 3x2 ≥ 0 với mọi x
=> 3x2 + 10 ≥ 10 > 0 với mọi x
=> Điều phải chứng minh
\(x^2-8x+20=\left(x^2-8x+16\right)+4=\left(x-4\right)^2+4\ge4>0\forall x\)