tìm các số nguyên x,y sao cho:
(35x-4) chia hết cho (7x+1)
(x+1) nhân (y-2)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A )Tìm các số nguyên x,y sao cho: (2*X+1)*(y-5)=12
B)Tìm số tự nhiên sao cho 4*n-5 chia hết cho 2*n-1
a, \((2x+1)(y-5)=12\)
\(\Rightarrow(2x+1)(y-5)\inƯ(12)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Lập bảng :
2x + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
y - 5 | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
x | 0 | -1 | loại | loại | 1 | -2 | loại | loại | loại | loại | loại | loại |
y | -7 | 17 | -1 | 11 | 1 | 9 | 2 | 8 | 3 | 7 | 4 | 6 |
Vậy : ...
Câu b có trong câu hỏi tương tự
\(4n-5⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{1;0;2;-1\right\}\)
Vậy...............
BÀI 1:
\(3x+23\)\(⋮\)\(x+4\)
\(\Leftrightarrow\)\(3\left(x+4\right)+11\)\(⋮\)\(x+4\)
Ta thấy \(3\left(x+4\right)\)\(⋮\)\(x+4\)
nên \(11\)\(⋮\)\(x+4\)
hay \(x+4\)\(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x+4\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-15\) \(-5\) \(-3\) \(7\)
Vậy \(x=\left\{-15;-5;-3;7\right\}\)
BÀI 2
\(\left(x+5\right)\left(y-3\right)=11\)
\(\Rightarrow\)\(x+5\) và \(y-3\) \(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau:
\(x+5\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-16\) \(-6\) \(-4\) \(6\)
\(y-3\) \(-1\) \(-11\) \(11\) \(1\)
\(y\) \(2\) \(-8\) \(14\) \(4\)
Vậy.....
bài 1:
3x + 23 chia hết cho x + 4
ta có: 3x + 23 chia hết cho x + 4
mà x + 4 chia hết cho x + 4
=> 3(x + 4) chia hết cho x + 4
=> (3x + 23) - 3(x + 4) chia hết cho x + 4
3x + 23 - 3x - 12 chia hết cho x + 4
=> 11 chia hết cho x + 4
=> x + 4 thuộc Ư(11)
mà Ư(11)= {-11;-1;1;11}
=> x + 4 thuộc {-11;-1;1;11}
=> x thuộc {-15;-5;-3;7}
Vậy x thuộc {-15;-5;-3;7} thì 3x + 23 chia hết cho x + 4
bài 2:
(x + 5).(y-3) = 11
ta có bảng:
x + 5 -11 -1 1 11
y - 3 -1 -11 11 1
x -16 -6 -4 6
y 2 -8 14 4
vậy (x,y) thuộc {(-16;2);(-6;-8);(-4;14);(6;40} thì (x + 5).(y - 3) = 11
Chúc bạn học giỏi ^^
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
\(\left(35x-4\right)⋮\left(7x+1\right)\)
\(\Leftrightarrow\left(35x+5-9\right)⋮\left(7x+1\right)\)
\(\Leftrightarrow9⋮\left(7x+1\right)\)
\(\Leftrightarrow7x+1\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
\(\Leftrightarrow x=0\)
\(\left(x+1\right)\left(y-2\right)=4\)
\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-2;0;1;4\right\}\)
\(\Leftrightarrow y\in\left\{1;0;-2;6;4;3\right\}\)