Tìm x, y nguyên thỏa mãn: \(x^3=y^3+2y^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(3-y^2-2y=4-\left(y^2+2y+1\right)=4-\left(y+1\right)^2\le4\)
\(\Rightarrow\left|x+3\right|+\left|x-1\right|\ge3-y^2-2y\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+3\right)\left(1-x\right)\ge0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le1\\y=-2\end{matrix}\right.\)
Các cặp số nguyên thỏa mãn là:
\(\left(x;y\right)=\left(-3;-2\right);\left(-2;-2\right);\left(-1;-2\right);\left(0;-2\right);\left(1;-2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow y\left(x+2\right)=x^2+3x-1\)
Dễ thây \(x\ne-2\)
\(\Rightarrow y=\frac{x^2+3x-1}{x+2}=x+1-\frac{3}{x+2}\)
Để y nguyên thì x + 2 là ươc của 3 hay
\(\left(x+2\right)=\left\{-3;-1;1;3\right\}\)
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow x^2-xy+3x-2y-1=0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(2x-2y\right)+x-1=0\)
\(\Leftrightarrow x\left(x-y\right)+2\left(x-y\right)+\left(x+2\right)-3=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-y\right)+\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-y+1\right)=3\)
Ta có x, y \(\in\) Z nên x + 2 là ước của 3 \(\Rightarrow x+2\in\left\{1;3;-1;-3\right\}\). Ta có bảng sau:
x + 2 | x - y + 1 | x | y |
1 | 3 | -1 | -3 |
3 | 1 | 1 | 1 |
-1 | -3 | -3 | 1 |
-3 | -1 | -5 | -3 |
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-1=y^2\left(y+2\right)\)
\(\left(x-1\right)\left(x^2+x+1\right)=y^2\left(y+2\right)\)