K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

a, GTLN của A = 6 

12 tháng 4 2019

A=x+2019/x thì lm sao tìm đc GTLN

12 tháng 4 2019

tui biết GTLN của nó là \(\frac{2019}{2}\)nhưng ko bt lm

14 tháng 10 2020

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)

ĐK : x ≠ ±1 ; x ≠ 0 ; x ≠ -2019

\(=\left(\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\frac{x^2-1}{x^2-1}\times\frac{x+2019}{x}=\frac{x+2019}{x}\)

14 tháng 10 2020

b. \(A=\frac{x+2019}{x}=1+\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\hept{\begin{cases}x>0\\x\in Z\end{cases}}\) và x đạt giá trị bé nhất 

<=> x = 1

Khi đó A = 2020 

14 tháng 10 2019

dk 3x+2 

P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)

dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)

P(x2+4) = x <=> Px2-x+4P=0

để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)

Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)

P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)

a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)

\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)

\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

b: Để A>0 thì x-2>0

hay x>2

Để A>-1 thì A+1>0

\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)

=>x/x-2>0

=>x>2 hoặc x<0

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

8 tháng 5 2019

1. A=\(\frac{x^2-1}{x^2+1}\)

=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)

để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN 

mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0. 

khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0

8 tháng 5 2019

Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)

\(=\left|x+2017\right|+\left|2-x\right|\)

\(\ge\left|x+2017+2-x\right|\)

\(=2019\)

Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)

\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)

Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)