\(\left|x-15\right|=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\)
\(8 - x + 15 = 6 - 4x\)
\( - x + 4x = 6 - 8 - 15\)
\(3x = - 17\)
\(x = \left( { - 17} \right):3\)
\(x = \dfrac{{ - 17}}{3}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)
\( - 9 + 12u = - 45 + 6u\)
\(12u - 6u = - 45 + 9\)
\(u = \left( { - 36} \right):6\)
\(6u = - 36\)
\(u = - 6\)
Vậy nghiệm của phương trình là \(u = - 6\).
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)
\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)
\({x^2} + 6x + 9 - {x^2} - 4x = 13\)
\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy nghiệm của phương trình là \(x = 2\).
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)
\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)
\({y^2} - 25 - {y^2} + 4y - 4 = 5\)
\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)
\(4y = 34\)
\(y = 34:4\)
\(y = \dfrac{{17}}{2}\)
Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).
Đặt \(x^2-6x+15=a,2x=b\)
\(PT\Leftrightarrow\left(a-2b\right)\left(a-3b\right)=2ab\)
\(\Leftrightarrow a^2-7ab+6b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}}\)
Đến đây đơn giản rồi nhé :))))
Để \(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)
Thì phải có một sốâm và 3 số dương hoặc 1 số dương và 3 số âm
Mà \(x^2\ge0\forall x\)
\(\Rightarrow x^2-20< x^2-15< x^2-10< x^2-5\)
+ Với TH có 1 số âm và 3 số dương:
\(\Rightarrow\left\{{}\begin{matrix}x^2-20< 0\\x^2-15>0\end{matrix}\right.\)\(\Leftrightarrow15< x^2< 20\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
+ Với TH có 1 số dương và 3 số âm:
\(\Rightarrow\left\{{}\begin{matrix}x^2-10< 0\\x^2-5>0\end{matrix}\right.\)\(\Leftrightarrow5< x^2< 10\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Vậy \(S=\left\{\pm3;\pm4\right\}\)
Áp dụng bất đẳng thức AM - GM:
\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).
Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).
Đẳng thức xảy ra khi x = 4.
Vậy...
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\left(1\right)\\\left(x-y\right)^2\left(x+y\right)=3\left(2\right)\end{matrix}\right.\)
Lấy (1) : (2) ta có :
\(x^2+y^2=5.\left(x-y\right)^2\Leftrightarrow x^2+y^2=5x^2-10xy+5y^2\)
\(\Leftrightarrow4\left(x^2+y^2\right)=10xy\Leftrightarrow x^2+y^2=\dfrac{10}{4}xy\left(3\right)\)
thay (3) vào (1) ta có :
(x+y) .xy=6
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=1\\xy=6\end{matrix}\right.\end{matrix}\right.\)
còn lại bn tự giải
\(\Leftrightarrow x^2+5x+6+x^2-5x+6-x^2-2x-15=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
Vậy phương trình có tập nghiệm là S = {-1 ; 3}
\(|x+15|=2\)
TH1: \(x+15=2\Rightarrow x=2-15=-13\)
TH2:\(x+15=-2\Rightarrow x=-2-15=-17\)
Vậy: \(x\in\left\{-17;-13\right\}\)
=.= hk tốt!!
\(\left|x-15\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-15=-2\\x-15=2\end{cases}}\)
\(\text{Trường hợp : }x-15=-2\)
\(\Leftrightarrow x=-2+15\)
\(\Leftrightarrow x=13\)
\(\text{Trường hợp : }x-15=2\)
\(\Leftrightarrow x=2+15\)
\(\Leftrightarrow x=17\)
\(\text{Vậy }x\in\left\{13;17\right\}\)