Cho P= √ x2 +∛x4y2 +√y2 +∛x2y4. CMR ∛P2= ∛x2 +∛y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy< =x^2+y^2=8\Rightarrow x^2+2xy+y^2=\left(x+y\right)^2< =8+8=16\Rightarrow x+y< =4\)
1: \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
2: \(x^2-y^2+x-y\)
\(=\left(x^2-y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
3: \(3x-3y+x^2-y^2\)
\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
4: \(5x-5y+x^2-y^2\)
\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(5+x+y\right)\)
5: \(x^2-5x-y^2-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
6: \(x^2-y^2+2x-2y\)
\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
7: \(x^2-4y^2+x+2y\)
\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+1\right)\)
8: \(x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
9: \(x^2-4y^2+2x+4y\)
\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
9: \(\left(-2x\right)\left(3x^2-2x+4\right)=-6x^3+4x^2-8x\)
\(2x^2\left(x^2+y^2\right)+2y^2\left(x^2+y^2\right)+5\left(y^2+x^2\right)\)
\(=\left(x^2+y^2\right)\left(2x^2+2y^2\right)+5\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2\right)\left(x^2+y^2\right)+5\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2\right)^2+5\left(x^2+y^2\right)\)
Thay \(x^2+y^2=1\) vào ta có:
\(2\cdot1^2+5\cdot1=2+5=7\)
\(A=\left(2x^2+2y^2+5\right)\left(x^2+y^2\right)\)
=2x^2+2y^2+5
=2(x^2+y^2)+5
=2+5
=7
\(x^2-\left(y+1\right)x+y^2-y=0\)
\(\Leftrightarrow x^2-\left(y+1\right)x+\dfrac{1}{4}\left(y+1\right)^2-\dfrac{1}{4}\left(y+1\right)^2+y^2-y=0\)
\(\Leftrightarrow\left(x-\dfrac{y+1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2-1=0\)
\(\Leftrightarrow\dfrac{3}{4}\left(y-1\right)^2-1=-\left(x-\dfrac{y+1}{2}\right)^2\le0\)
\(\Rightarrow\dfrac{3}{4}\left(y-1\right)^2\le1\)
\(\Rightarrow\left(y-1\right)^2\le\dfrac{4}{3}\)
Đại lượng `y` tỉ lệ nghịch với đại lượng `x` theo hệ số tỉ lệ `a -> y=a/x`
Các giá trị tương ứng của `x,y` lần lượt là `x_1,x_2,y_1,y_2`
Theo tính chất tỉ lệ nghịch, ta có:
`y_1*x_1=y_2*x_2=a`
`-> (y_1)/(y_2)=(x_2)/(x_1) -> (y_1)/(x_2)=(y_2)/(x_1)`
Xét các đ/án `-> C`