Tìm giá trị nhỏ nhất của: \(A=\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần chứng minh bđt : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2=\left(\left|a+b\right|\right)^2\)
\(\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+b^2+2ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)
Từ đó áp dụng ta được :
\(A\ge\sqrt{\left(x^2-6x+2y^2+4y+11\right)+\left(x^2+2x+3y^2+6y+4\right)}\)
\(\Leftrightarrow A\ge\sqrt{2x^2-4x+5y^2+10y+15}\)
\(\Leftrightarrow A\ge\sqrt{\left(2x^2-4x+2\right)+\left(5y^2+10y+5\right)+8}\)
\(\Leftrightarrow A\ge\sqrt{2\left(x-1\right)^2+5\left(y+1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\) có gtnn là \(2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)
\(A=\sqrt{x^2-6x+9+2\left(y^2+2y+1\right)}+\sqrt{x^2+2x+1+3\left(y^2+2y+1\right)}.\)
\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
Với mọi giá trị được xác định của x; giá trị của biến y không phụ thuộc vào x, ta luôn có:
\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\le\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+1\right)^2}\)(1)
Dấu "=" khi y = -1.
(1) \(\Rightarrow A\le\left|x-3\right|+\left|x+1\right|\)(2)
- \(x< -1\)(2) \(\Rightarrow A\le-\left(x-3\right)-\left(x+1\right)=-2x+2>4\forall x< -1\)
- \(-1\le x\le3\)(2) \(\Rightarrow A\le-\left(x-3\right)+\left(x+1\right)=4\forall-1\le x\le3\)
- \(x>3\)(2) \(\Rightarrow A\le\left(x-3\right)+\left(x+1\right)=2x-2>4\forall x>3\)
Vậy GTNN của A = 4 khi -1<= x <= 3 và y = -1.
\(x=\sqrt{y^2+2y+5}+\sqrt{2y^2+4y+3}\)
\(=\sqrt{\left(y^2+2y+1\right)+4}+\sqrt{\left(2y^2+4y+2\right)+1}\)
\(=\sqrt{\left(y+1\right)^2+4}+\sqrt{2\left(y+1\right)^2+1}\)
\(\ge\sqrt{4}+\sqrt{1}=3\)
Dấu "=" xảy ra tại \(y=-1\)
Vậy \(x_{min}=3\) tại \(y=-1\)
a) Ta có:
\(A=2x^2-3x-7+4y^2-8y=2\left(x^2-2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\left(2y\right)^2-2.2y.2+4-\dfrac{97}{8}\)\(\Leftrightarrow A=2\left(x-\dfrac{3}{4}\right)^2+\left(2y-2\right)^2-\dfrac{97}{8}\ge0+0-\dfrac{97}{8}=\dfrac{-97}{8}\)
Vậy \(A_{min}=\dfrac{-97}{8}\), đạt được khi và chỉ khi \(x=\dfrac{3}{4},y=1\)
toan violympic lop 9 la GTNN
\(B=\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)
\(=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2+9}+\sqrt{\left(x+1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)
tick nha
\(B=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2+3^2}+\sqrt{\left(x+2\right)^2+2^2}\ge\sqrt{\left(3-x+x+2\right)^2+\left(3+2\right)^2}=5\sqrt{2}\)
Bmin = \(5\sqrt{2}\) khi x=0 ; y =-1
B min nhé
\(B=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
A/dụng bđt Mincốpxki có:
\(B=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\ge\sqrt{\left(3-x+x+1\right)^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}=\sqrt{4^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\ge\sqrt{4^2}=4\)
Dấu ''='' xảy ra khi \(\left[{}\begin{matrix}x=3;y=-1\\x=1;y=-1\end{matrix}\right.\)
Vậy MinB = 4 <=> (x;y) = (3;-1); (1;-1)
\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2+9}+\sqrt{\left(x+1\right)^2+4}\ge\sqrt{\left(3-x\right)^2+3^2}+\sqrt{\left(x+1\right)^2+2^2}\)
\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(3+2\right)^2}\text{ }\left(Mincopxki\right)\)
\(=\sqrt{41}\)
Đẳng thức xảy ra khi \(y+1=0\text{ và }\frac{3-x}{x+1}=\frac{3}{2}\Leftrightarrow y=-1;\text{ }x=\frac{3}{5}.\)
Vậy GTNN của A là \(\sqrt{41}\)