K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

Tổng trên có số số hạng là: \(\left(n-2\right):1+1=n-1\) số hạng

Suy ra \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\)

\(=\frac{\left(\frac{1}{n}+\frac{1}{2}\right)\left(n-1\right)}{2}=\frac{\frac{1}{n}\left(n-1\right)+\frac{1}{2}\left(n-1\right)}{2}\)

\(=\frac{1-\frac{1}{n}+\frac{n}{2}-\frac{1}{2}}{2}=\frac{\frac{1}{2}-\left(\frac{1}{n}-\frac{n}{2}\right)}{2}\)

\(=\frac{\left(\frac{1}{2}\right)}{2}-\frac{\left(\frac{2}{2n}\right)}{2}+\frac{\left(\frac{n^2}{2n}\right)}{2}=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}\)

Suy ra \(n\ne0\).Ta có: \(S=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}=\frac{1+n}{4}-\frac{1}{2n}\)

\(=\frac{2n^2+2n+4}{8n}=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{\left(\frac{7}{2}\right)}{8n}\)

\(=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{7}{16n}\)

Đến đây bí =)Alibaba!

28 tháng 5 2019

cm cái j v ạ ?

28 tháng 5 2019

Chứng minh nó không thuộc Z

14 tháng 4 2018

Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé

7 tháng 5 2019

Ta có :

\(\frac{1}{1^2}< \frac{1}{1\cdot2};\frac{1}{2^2}< \frac{1}{2\cdot3};.....;\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(\Rightarrow a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow a< 1-\frac{1}{50}=\frac{49}{50}\)

\(a< \frac{49}{50}< 1< 2\)

\(\Rightarrow a< 2\)

thanks bạn rất nhiều

19 tháng 3 2016

a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)

=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\) 

=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.

b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\) 

=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)

Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) 

=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)

=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)

=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.

 

 

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. 

9 tháng 5 2019

Sao k có ai giúp mk hết vậy >:((, thôi để mk tự giúp mk vậy :>. E mới nghĩ ra cách này có gì sai anh giúp đỡ.

Cách 1 - Ta có :

\(A=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{1.4}+...+\frac{1}{3.2}+\frac{1}{3.3}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

Mà \(\frac{5}{6}>\frac{2}{3}\Rightarrow\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}>\frac{2}{3}\)

\(\Leftrightarrowđpcm\)

11 tháng 5 2019

~ Nguyệt ~:Đúng rồi nha em.

Anh nghĩ em nên trích ra các số quy luật, sau đó tính tổng rồi so sánh.

Như thế bài làm của em sẽ hay hơn.

19 tháng 10 2015

tick câu trả lời tương tự đó bn

 

19 tháng 10 2015

Trần Thùy Dung có lòng mà, giúp đi