Tìm x biết: \(\dfrac{x+1}{x-1}=\dfrac{x-2019}{x+2019}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{x-2}{2020}-1+\dfrac{x-3}{2019}-1=\dfrac{x-2019}{3}-1+\dfrac{x-2020}{2}-1\)
=>x-2022=0
hay x=2022
\(\Leftrightarrow1+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{x\left(x+1\right)}=1+\dfrac{2019}{2021}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2019}{2021}\)
\(\Leftrightarrow1-\dfrac{2}{x+1}=\dfrac{2019}{2021}\)
\(\Leftrightarrow\dfrac{2}{x+1}=1-\dfrac{2019}{2021}\)
\(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{2}{2021}\)
\(\Leftrightarrow x+1=2021\)
\(\Leftrightarrow x=2020\)
refer
https://lazi.vn/edu/exercise/634984/tim-x-biet-x-1-2019-x-2-2020-x-3-2021x-4-2022
\(x+y+z=2018\)\(\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\\ \Leftrightarrow x^2y+xy^2+xyz+xyz+y^2z+\\ yz^2+zx^2+xyz+z^2x-xyz=0\)
\(\Leftrightarrow x^2y+xy^2+xyz+xyz+\\ y^2z+yz^2+zx^2+z^2x=0\)
\(\Leftrightarrow xy\left(x+y\right)+yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)=0\\ \Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
suy ra x+y=0 hoặc y+z=0 hoặc x+z=0
hay x=-y hoặc y=-z hoặc x=-z
thay vào D ta tính dc kq
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
Lời giải:
Đặt \(\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p\). Khi đó:
ĐKĐB $\Leftrightarrow \frac{a^2m^2+b^2n^2+c^2p^2}{a^2+b^2+c^2}=m^2+n^2+p^2$
$\Rightarrow a^2m^2+b^2n^2+c^2p^2=(a^2+b^2+c^2)(m^2+n^2+p^2)$
$\Leftrightarrow a^2n^2+a^2p^2+b^2m^2+b^2p^2+c^2m^2+c^2n^2=0$
$\Rightarrow an=ap=bm=bp=cm=cn=0$
Vì $a,b,c\neq 0$ nên $m=n=p=0$
$\Rightarrow x=y=z=0$
Khi đó:
$\frac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0$
$\frac{x^{2019}}{a^{2019}}=\frac{y^{2019}}{b^{2019}}=\frac{z^{2019}}{c^{2019}}=0$
$\Rightarrow$ đpcm
a: Số cần tìm là 5,32:0,125=42,56
b: \(A=1+\dfrac{1}{2019}-1-\dfrac{1}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}=0\)
\(\dfrac{x+1}{x-1}=\dfrac{x-2019}{x+2019}\)
\(\Leftrightarrow1+\dfrac{2}{x-1}=1-\dfrac{4038}{x+2019}\)
\(\Leftrightarrow\dfrac{2}{1-x}=\dfrac{4038}{x+2019}\)
\(\Leftrightarrow2x+4038=4038-4038x\)
\(\Leftrightarrow2x=-4038x\)
\(\Leftrightarrow x=0\)
Vậy x = 0