cho H=22018-22017-22016-...- 2 - 1. Tính 2018H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^3+2^4+...+2^{2019}\)
\(A=2A-A=1-2^{2019}\)
\(B-A=2^{2019}-\left(1-2^{2019}\right)\)
\(B-A=2^{2019}-1+2^{2019}\)
\(B-A=1\)
`#3107`
\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)
\(A=2^{2019}-1\)
Vậy, \(A=2^{2019}-1\)
Ta có:
\(B-A=2^{2019}-2^{2019}+1=1\)
Vậy, `B - A = 1.`
\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)
\(2S=2^2+2.2^3+3.2^4+...+2016.2^{2017}\)
\(2S-S=S=\text{}\text{}\text{}\text{}2^2+2.2^3+3.2^4+...+2016.2^{2017}-2-2.2^2-3.2^3-...-2016.2^{2016}\)
\(S=2\left(0-1\right)+2^2\left(1-2\right)+2^3\left(2-3\right)+...+2^{2016}\left(2015-2016\right)+2^{2017}.2016\)
\(S=-\left(2+2^2+2^3+...+2^{2016}\right)+2^{2017}.2016\)
\(\)Đặt \(A=2+2^2+2^3+...+2^{2016}\)
\(2A=2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=A=2^2+2^3+2^4+...+2^{2017}-2-2^2-2^3-...-2^{2016}\)
\(A=2^{2017}-2\)
Thay vào S ta được:
\(S=-2^{2017}+2+2^{2017}.2016\)
\(S=2^{2017}.2015+2\)
Ta có \(S+2013=2^{2017}.2015+2+2013\)
\(S+2013=2^{2017}.2015+2015\)
\(S+2013=2015\left(2^{2017}+1\right)\)
Suy ra \(S+2013⋮2^{2017}+1\)
Vậy \(S+2013⋮2^{2017}+1\) (đpcm)
Ta có
z = - 1 + 3 i 2 ⇒ 2 z + 1 = 3 i ⇒ 2 x + 1 2 = - 3
hay z 2 + z + 1 = 0 ⇔ z + 1 z = - 1
Khi đó:
z 2 = 1 z 2 = z + 1 z 2 - 2 = - 1 z 3 = 1 z 3 = z + 1 z 3 - 3 z + 1 z = 2 z 4 = 1 z 4 = z 2 + 1 z 2 - 2 = - 1
Như vậy
P = - 1 2016 + - 1 2017 + 2 2018 + - 1 2019 - 2 2018 = - 1
Đáp án D
Ta có:
A = 2 + 22 + 23 + … + 22017
2A = 2.( 2 + 22 + 23 + … + 22017)
2A = 22 + 23 + 24 + … + 22018
2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)
Vậy A = 22018 – 2
Đặt G=2^2017+2^2016+...+2+1
=>2G=2^2018+2^2017+...+2^2+2
=>G=2^2018-1
=>H=2^2018-2^2018+1=1
=>2018^H=2018