K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

giúp mk vs mai mk phải nộp rồi

14 tháng 5 2021

\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)

\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)

( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )

Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )

\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)

Dấu "=" xảy ra <=> a=b=1/2 

Vậy ...

9 tháng 12 2018

\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}+1-1\ge\left(a+b+1\right)2\sqrt{\left(ab\right)^2}+\frac{\left(2+1\right)^2}{a+b+1}-1\)

\(=2\left(a+b+1\right)+\frac{9}{a+b+1}-1\ge2\sqrt{ab}+1+2\sqrt{\frac{9\left(a+b+1\right)}{a+b+1}}-1\ge2+6=8\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=b^2\left(1\right)\\\frac{2}{a+b}=1\left(2\right)\\a+b+1=\frac{9}{a+b+1}\left(3\right)\end{cases}}\)

pt \(\left(1\right)\)\(\Leftrightarrow\)\(a=b\) ( vì a, b > 0 ) 

pt \(\left(2\right)\)\(\Leftrightarrow\)\(a=b=1\)

pt \(\left(3\right)\)\(\Leftrightarrow\)\(\left(a+b+1\right)^2=9\)\(\Leftrightarrow\)\(a+b+1=3\) ( đúng vì \(a=b=1\) ) 

Vậy GTNN của \(A\) là \(8\) khi \(a=b=1\)

Chúc bạn học tốt ~ 

30 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

30 tháng 12 2016

\(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)=2+a+b+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}\)

\(\ge2+2+a+b+\frac{4}{a+b}\)

\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\)

 \(\ge4+2\sqrt{2}+\frac{2}{\sqrt{2\left(a^2+b^2\right)}}\)

\(=4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

8 tháng 7 2017

thiếu đề bn ơi: a+b+c=?

28 tháng 7 2017

HIHI viết thiếu nhưng mk ra rồi cảm ơn ạ !

30 tháng 5 2015

p = \(\frac{a^2+b^2-2ab+9}{a-b}\)

= (a-b) + \(\frac{9}{a-b}\)

= (\(\sqrt{a-b}\) - \(\frac{3}{\sqrt{a-b}}\))\(^2\) +6

p lớn nhất= 6 khi \(\sqrt{a-b}\)=\(\frac{3}{\sqrt{a-b}}\)

a- b = 3

mà ab = 4

giải pt bậc 2

có a=4, b=1 hoặc a= -1, b= -4

4 tháng 5 2018

Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2

Theo Cauchy có: 

\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)

=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)

Hoặc:

P2= (a2+b2+c2)(b2+c2+a2

Theo Bunhiacopxki có:

P2= (a2+b2+c2)(b2+c2+a2\(\ge\)(ab+bc+ca)2=92

=> P\(\ge\)9  => Pmin=9

5 tháng 5 2018

Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)

\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)

\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)

Cộng từng vế của (1), (2) và (3) ta được: 

ab + bc + ca -2(a +b +c) + 3 \(\ge0\)

=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)

Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)

=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)

Vậy GTLN của P là 18 

Dâu "=" xảy ra khivà chỉ khi:

a =b=1, c=4 

hoặc: b=c=1, a=4

hoặc: c=a=1, b=4