K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đang c/m bdt tự nhiên mò dc cái này chia sẻ cho các bạn :V

\(x-z=x+y-y-z=\left(x+y-y-z\right)^2\ge0.\)

\(\left(x+y\right)^2-2\left(x+y\right)\left(y+z\right)+\left(y+z\right)^2\ge0\)

\(\left(x+y\right)^2+2\left(x+y\right)\left(y+z\right)+\left(y+z\right)^2\ge4\left(x+y\right)\left(y+z\right)\)

\(\left(x+y\right)\left(x+2y+z\right)+\left(y+z\right)\left(x+2y+z\right)\ge4\left(x+y\right)\left(y+z\right)\)

\(\left(x+2y+z\right)\ge\frac{4\left(x+y\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)}=4\) :v

11 tháng 1 2019

Đề sai hì :))

7 tháng 2 2020

Ta có: \(x+y+z=1\) nên:

\(\Rightarrow y+z=1-x\)

Thay \(y+z=1-x\) và áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) ta được:

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2\left(1-y\right)\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)

\(\Rightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1+y=x+2y+z\left(đpcm\right)\)

7 tháng 2 2020

cauchy hả ủa mà chế học lớp 9 òi à Phạm Thị Diệu Huyền

10 tháng 6 2018

Đặt \(a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)

Thì \(\Rightarrow a+b+c=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{x+y+y+z+z+x}{2}=\)\(x+y+z=1\)

Bất đẳng thức đã tương đương với \(x+2y+z\ge4\left(x+y\right).\left(y+z\right).\left(z+x\right)\)

\(\Rightarrow a+b\ge16abc\)

Ta có: \(\left(a+b\right).\left(a+b+c\right)^2\ge4\left(a+b\right).4c\left(a+b\right)\ge16abc\left(đpcm\right).\)

10 tháng 6 2018

cảm ơn bn

19 tháng 8 2017

Chứng minh $x+2y+z\geq 4(1-x)(1-y)(1-z)$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

14 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).

Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).

Do đó ta chỉ cần chứng minh:

\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).

Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi y = 0; x = z = 1.

 

 

NV
10 tháng 1 2021

\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)

Ta có:

\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)

\(VT\ge2\left(x+y+z\right)+2y+4x\)

\(VT\ge2\left(3x+2y+z\right)\ge4\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

14 tháng 8 2017

Áp dụng BĐT AM - GM, ta có:

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(=4\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

\(\le\frac{\left(x+y+y+z\right)^2}{4}\times4\left(x+z\right)\)

\(=\left(x+2y+z\right)^2\left(x+z\right)\)

\(\le\left(x+2y+z\right)\times\frac{\left(x+2y+z+x+z\right)^2}{4}\)

\(=\left(x+2y+z\right)\times\frac{4\left(x+y+z\right)^2}{4}\)

\(=x+2y+z\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c = \(\frac{1}{3}\)

14 tháng 8 2017

Dấu = xảy ra:\(\hept{\begin{cases}x=z=\frac{1}{2}\\y=0\end{cases}}\)

26 tháng 8 2015

Áp dụng bất đẳng thức quen thuộc \(4xy\le\left(x+y\right)^2\), cho ta

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(1-x\right)\left(1-z\right)\cdot\left(1-y\right)\)

\(\le\left(1-x+1-z\right)^2\cdot\left(1-y\right)=\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\)

\(\le1+y=x+2y+z.\)