K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Ta có:Chứng minh hằng Äẳng thức,(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a),Những hằng Äẳng thức Äáng nhá»,Toán há»c Lá»p 8,bà i tập Toán há»c Lá»p 8,giải bà i tập Toán há»c Lá»p 8,Toán há»c,Lá»p 8

\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b,c=-1\\b=-c,a=-1\\c=-a,b=-1\end{matrix}\right.\)

Trường hợp a = -b

\(\Rightarrow a^{2019}+b^{2019}+c^{2019}=\left(-b\right)^{2019}+b^{2019}+c^{2019}=c^{2019}=\left(-1\right)^{2019}=-1\)

Các trường hợp khác tương tự đều có kq = -1

15 tháng 5 2019

Ta Co:Chứng minh hằng Äẳng thức,(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a),Những hằng Äẳng thức Äáng nhá»,Toán há»c Lá»p 8,bà i tập Toán há»c Lá»p 8,giải bà i tập Toán há»c Lá»p 8,Toán há»c,Lá»p 8

18 tháng 1 2019

=> \(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

đoạn tiếp tham khảo tại: Boul đz :D

18 tháng 1 2022

heo dõi mk dc k

18 tháng 1 2022

giúp mình đi rồi theo dõi=)

1 tháng 3 2020

-(-219)+(-219)-401+12

30 tháng 4 2020

https://olm.vn/hoi-dap/detail/108515110153.html

9 tháng 4 2020

\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)

\(=> (a+b+c)(1/a +1/b+1/c) = 1\)

\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)

\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)

\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)

\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)

\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)

\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)

\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)

\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)

\(<=> (b+c)[a(a+b) + c(a+b)] =0\)

\(<=> (b+c)(a+b)(a+c) =0 \)

<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)

\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)

Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)