Cho A= 1+5^2+5^4+...+5^2008. So sánh A với 5^2010-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{1}< \sqrt{2};\sqrt{3}< \sqrt{4};\sqrt{5}< \sqrt{6};...;\sqrt{2009}< \sqrt{2010}\)
\(\Rightarrow\sqrt{1}+\sqrt{3}+\sqrt{5}+...+\sqrt{2009}< \sqrt{2}+\sqrt{4}+\sqrt{6}+...+\sqrt{2010}\)
\(\Rightarrow2\left(\sqrt{1}+\sqrt{3}+\sqrt{5}+...+\sqrt{2009}\right)< 2\left(\sqrt{2}+\sqrt{4}+\sqrt{6}+...+\sqrt{2010}\right)\)
\(\Rightarrow2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{2009}< 2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{2010}\)
Vậy A < B.
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
\(A=1+5^2+5^4+.....+5^{2008}\)
\(25A=5^2+5^4+.....+5^{2010}\)
\(25A-A=5^{2010}-1\)
\(A=\frac{5^{2010}-1}{24}<5^{2010}-1\)