Nếu \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a+b}\) (với a,b\(\ne\)0; a\(\ne\)-b) thì giá trị của biểu thức \(\dfrac{b}{a}+\dfrac{a}{b}\) là:........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )
Ta có: \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
\(=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-2\left(\dfrac{c}{abc}+\dfrac{b}{abc}+\dfrac{a}{abc}\right)}\)
\(=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-2\cdot\dfrac{a+b+c}{abc}}\)
\(=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\) hả Lặng Thầm
Ta có: \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)
Ta cần chứng minh: \(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=0\) thật vậy:
\(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=\dfrac{2\left(a+b+c\right)}{abc}=\dfrac{2.0}{abc}=0\)Tức là:\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\left(đpcm\right)\)
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a+b}\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{1}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2=ab\)
\(\Rightarrow\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{a^2+b^2}{ab}=\dfrac{\left(a+b\right)^2-2ab}{ab}=\dfrac{ab-2ab}{ab}=\dfrac{-ab}{ab}=-1\)
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{a+b}{ab}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{a+b}\)
\(\Leftrightarrow ab=\left(a+b\right)^2\)
Vậy, \(\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{a^2+b^2}{ab}=\dfrac{a^2+2ab+b^2-2ab}{ab}=\dfrac{\left(a+b\right)^2-2ab}{ab}=\dfrac{ab-2ab}{ab}=\dfrac{-ab}{ab}=-1\)