K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

a) \(m^3+3m^2-m-3\)

\(=m\left(m^2-1\right)+3\left(m^2-1\right)\)

\(=\left(m^2-1\right)\left(m+3\right)\)

\(=\left(m-1\right)\left(m+1\right)\left(m+3\right)\)

Mà n lẻ nên ta có \(m=2k+1\)

Từ đó ta có tích :

\(\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=2k\cdot2\left(k+1\right)\cdot2\cdot\left(k+2\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Dễ thấy \(k\left(k+1\right)\left(k+2\right)\)là tích của 3 số nguyên liên tiếp nên tích đó chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)⋮8\cdot6=48\left(đpcm\right)\)

4 tháng 1 2019

Biết làm câu b k chỉ cho mình với 

21 tháng 10 2016

b) A=m3+3m2-m-3

=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)

=(m-1)(m2+m+1+m+2m+2)

=(m-1)(m2+4m+4-1)

=(m-1)[ (m+2)2-1 ]

=(m-1)(m+1)(m+3)

với m là số nguyên lẻ

=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)

    m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)

    m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)

ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)

A=(2k-2)2k(2k+2)

=(4k2-4)2k

=8k(k-1)(k+1)

k-1 ;'k và k+1 là 3 số nguyên liên tiếp

=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3

=> tích (k-1)k(k+1) luôn chia hết cho 6

=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48

=> (m3+3m3-m-3) chia hết cho 48(đfcm)

21 tháng 10 2016

ở lớp 8 ta có chứng minh rằng 3 số tự nhiên liên tiếp luôn chia hết cho 6 rồi đó ở trong sbt toán 8

6 tháng 4 2022

 

 

 

 

 

- Nếu mm chẵn ⇒m=2k⇒m=2k

⇒A=(2k+2n+1)(6k−2n−2)=2.(2k+2n+1)(3k−n−1)⇒A=(2k+2n+1)(6k−2n−2)=2.(2k+2n+1)(3k−n−1)

⇒A⇒A là tích của 2 và 1 số tự nhiên ⇒A⇒A là một số chẵn

- Nếu mm lẻ ⇒m=2k+1⇒m=2k+1

⇒A=(2k+1+2n+1)(6k+3−2n+2)=2(k+n+1)(6k−2n+5)⇒A=(2k+1+2n+1)(6k+3−2n+2)=2(k+n+1)(6k−2n+5)

⇒A⇒A là tích của 2 và 1 số tự nhiên ⇒A⇒Acũng là một số chẵn

Vậy AA luôn chẵn với mọi m, n tự nhiên

 

 

 

 

 

 

6 tháng 4 2022

mình ko hiểu

 

17 tháng 4 2017

a) phân tích nhân tử có cái trong ngoặc bằng (\(m^2-1\))\(\left(m+3\right)\)=(m-1)(m+1)(m+3)

có 3 số trên là 3 số chẵn liên tiếp suy ra tích trên chia hết cho 8 mà tích 3 số chẵn liên tiếp luôn chia hết cho6 nên tích trên chia hết cho 48

b)có \(5^{2n}\)đồng dư với 25 (mod của 19) mà 25 đồng dư với 6(mod của 19) suy ra \(5^{2n}\)đồng dư với \(6^n\)(mod của 19) nên cái trong ngoặc đồng dư với \(6^n\left(7+12\right)\)=\(6^n\).19 đồng dư với 0 ( mod của 19) suy ra đpcm