Chứng minh rằng 10^28+8 chia hết cho 72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:72=8.9
vì (8,9)=1(UCLN) nên ta cm 10^28+8 chia hết cho 8 và cho 9
10^28=100......000(có 28 c/s 0) +8=100...0008(có 27 c/s 0)
dấu hiệu chia hết cho 8 là 3 chữ số cuối tạo thành số chia hết cho 8
mà 008 chia hết cho 8 nên 10^28+8 chia hết cho 8
ta lại có:1000....008=1+0+0+...+8=9 chia hết cho 9
=>10^28 chia hết cho 72
tk mk nha^^ thầy mới cho làm xong
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
a) Ta sẽ dùng cách cm gián tiếp:
Cho A = 14^13 + 14^12 + .... +14 + 1
=> 14A = 14^14 + 14^13 +...+14^2 +14
=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)
13A = 14^14 - 1
Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)
b) Tương tự như vậy:
Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1
=> 2015B = 2015^2016 + 2015^2015 +...+2015^2 +2015
=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)
2014B = 2015^2016 - 1
Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)
Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :
a, 14^14đồng dư 1^14đồng dư 1(mod13)
Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13) (đpcm)
b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1
...........rồi bạn suy ra nhé
b) \(69^2-69.5\)
= 69 . 69 -69 . 5
= 69 . (69 - 5)
=69 . 64
Vì 64 \(⋮\)32 nên 69 . 64 hay \(69^2\)- 69.5 \(⋮\)32
\(A=10^{2012}+10^{2011}+10^{2009}+8\)
\(A=10^{2009}\left(10^3+10^2+10^1+8\right)\)
\(A=10^{2009}.1111+8\)
\(A=11110.....8\)( 2009 c/s 0 )
Không có số chính phương nào có tận cùng là 8
\(\Rightarrow\) A không phải là số chính phương.
A có ba chữ số tận cùng là 008 nên \(A⋮8\) ( 1 )
A có tổng các chữ số là 9 nên \(A⋮3\) ( 2 )
Từ (1)(2) kết hợp với ( 3,8 )=1 \(\Rightarrow A⋮24\)
Đặt \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)
\(=n^2(n^4-1+n^2-1)\)
\(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)
\(=n^2(n^2-1)(n^2+2)\)
\(=n\cdot n(n-1)(n+1)(n^2+2)\)
+ Nếu n chẵn ta có n = 2k \((k\in N)\)
\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)
\(\Rightarrow A⋮8\)
+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)
\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)
\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
\(\Rightarrow A⋮8\)
Do đó A chia hết cho 8 với mọi \(n\in N\)
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n \(\in N\)
Chúc bạn học tốt :>
\(8^6+2^{20}+9^{10}-10\cdot3^{17}\)
\(=2^{18}+2^{20}+3^{20}-10\cdot3^{17}\)
\(=2^{18}\left(1+2^2\right)-3^{17}\left(3^3-10\right)\)
\(=2^{18}\cdot5-3^{17}\cdot17\) không chia hết cho 17
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8
=> 10^28 + 8 chia hết cho 8 (1)
Lại có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9
=> 10^28 +8 chia hết cho 9 (2)
Từ (1) và (2) suy ra :
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8; 9)=1
=> 10^28 chia hết cho 8.9
=> 10 ^28 chia hết cho 72
tik mình nha
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8=>10^28+8 chia hết cho 8
Ta có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9=> 10^28 +8 chia hết cho 9
suy ra:
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8;9)=1
Vì 10^28 chia hết cho 8.9
Nên 10 ^28 chia hết cho 72