cho x,y,z khong am cm x(x-y)^2+y(y-z)^2>=(x-y)(y-z)(x+y-z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
Ta co:
\(3=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le3=x^2+y^2+z^2\)
Xet
\(\left(x^2+y+z\right)\left(1+y+z\right)\ge3\left(x+y+z\right)^2\Rightarrow x^2+y+z\ge\frac{\left(x+y+z\right)^2}{1+y+z}\)
\(\Rightarrow VT\le\Sigma_{cyc}\frac{x\left(1+y+z\right)}{\left(x+y+z\right)^2}=\frac{x+y+z+2\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dau '=' xay ra khi \(x=y=z=1\)
x(x+y+z) + y(x+y+z) + z(x+y+z) = 2 + 25 - 2 = 25
=> ( x+ y+ z )(x+y+z) = 25
=> x + y+ z = 5 hoặc x + y +z = -5
(+) x + y +z = 5 => x.5 = 2 => x = 2/5
=> y.5=5 => y = 1
=> z.5 = -2 => z = -2/5
(+) x+ y+ z = -5 => -5x = 2 => x= -2/5 (loại x > 0)
Vậy x = 2/5 ; y = 1 ; z = -2/5