K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

\(M=\frac{x^2+2x-9}{x-3}\)

\(=\frac{x^2-6x+9+8x-24+6}{x-3}\)

\(=\frac{\left(x-3\right)^2+8\left(x-3\right)+6}{x-3}\)

\(=x-3+8+\frac{6}{x-3}\)

Do \(x>3\Rightarrow x-3>0\)

Áp dụng BĐT Cauchy , ta có : 

\(x-3+\frac{6}{x-3}\ge2\sqrt{\left(x-3\right).\frac{6}{x-3}}=2\sqrt{6}\)

\(\Rightarrow M=x-3+\frac{6}{x-3}+8\ge2\sqrt{6}+8\)

\(\Rightarrow M\ge\sqrt{24}+8\)

Dấu " = " xảy ra \(\Leftrightarrow x-3=\frac{6}{x-3}\Leftrightarrow\left(x-3\right)^2=6\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(L\right)\end{cases}}}\)

Vậy Min M là : \(\sqrt{24}+8\Leftrightarrow x=3+\sqrt{6}\)

NV
2 tháng 1 2019

\(P=\dfrac{x^2+2x-9}{x-3}=x+5+\dfrac{6}{x-3}=x-3+\dfrac{6}{x-3}+8\)

\(\Rightarrow P\ge2\sqrt{\left(x-3\right).\dfrac{6}{\left(x-3\right)}}+8=8+2\sqrt{6}\)

\(\Rightarrow P_{min}=8+2\sqrt{6}\) khi \(\left(x-3\right)^2=6\Rightarrow x=3+\sqrt{6}\)

2 tháng 1 2019

bạn có thể làm đầy đủ cho mik hiểu đc k

bắt đầu từ dòng thứ 2 mik đã k hiểu r

17 tháng 1 2017

vt rõ đề đi

17 tháng 1 2017

Ta cần chứng minh

\(x+\frac{27}{\left(x+3\right)^3}\ge1\)

\(\Leftrightarrow x+\frac{27}{\left(x+3\right)^3}-1\ge0\)

\(\Leftrightarrow x^4+8x^3+18x^2\ge0\)

Theo đề bài ta có: \(x\ge0\Rightarrow\left\{\begin{matrix}x^4\ge0\\8x^3\ge0\\18x^2\ge0\end{matrix}\right.\)

\(\Rightarrow x^4+8x^3+18x^2\ge0\)

Vậy ta có điều phải chứng minh. Dấu = xảy ra khi x = 0

2/ \(P=x+\frac{2}{2x+1}\)

\(\Leftrightarrow2P=2x+\frac{4}{2x+1}=2x+1+\frac{4}{2x+1}-1\)

\(\ge4-1=3\)

\(\Rightarrow P\ge\frac{3}{2}\)

Vậy GTNN là \(\frac{3}{2}\) đạt được khi x = \(\frac{1}{2}\)

10 tháng 2 2019

1 ) \(B=\dfrac{x^2-2x+2011}{x^2}=1-\dfrac{2}{x}+\dfrac{2011}{x^2}\)

Đặt \(\dfrac{1}{x}=a\) , khi đó :

\(B=1-2a+2011a^2\)

\(=2011\left(a^2-2a.\dfrac{1}{2011}+\dfrac{1}{2011^2}\right)+\dfrac{2010}{2011}\)

\(=2011\left(a-\dfrac{1}{2011}\right)^2+\dfrac{2010}{2011}\ge\dfrac{2010}{2011}\)

Dấu " = " xảy ra \(\Leftrightarrow a=\dfrac{1}{2011}\Leftrightarrow x=2011\)

2 ) ĐKXĐ : \(x\ne-1\)\(C=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)

haha

NV
10 tháng 2 2020

b/ Ko biết yêu cầu

4/ \(E=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)

Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)

\(F=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x^2}{4x^2}}=\frac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Rightarrow x=\sqrt[3]{2}\)

6/ \(Q=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{8\left(x+1\right)}{2\left(x+1\right)}}=4\)

Dấu "=" xảy ra khi \(\frac{x+1}{2}=\frac{8}{x+1}\Leftrightarrow x=3\)

NV
10 tháng 2 2020

7/

\(R=\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)

Dấu "=" xảy ra khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)

8/

\(S=x^2+\frac{2000}{x}=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{1000^2x^2}{x^2}}=300\)

Dấu "=" xảy ra khi \(x^2=\frac{1000}{x}\Leftrightarrow x=10\)