K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

AIi trả lời được mình sẽ cho 3 tục từ các mục của mình

X= -2x10^99 (âm 2 nhân 10 mũ 99)

ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2018};-\dfrac{2}{2019};-\dfrac{1}{505};\dfrac{-5}{2021}\right\}\)

Ta có: \(\dfrac{1}{2018x+1}-\dfrac{1}{2019x+2}=\dfrac{1}{2020x+4}-\dfrac{1}{2021x+5}\)

\(\Leftrightarrow\dfrac{2019x+2-2018x-1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{2021x+5-2020x-4}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(2018x+1\right)\left(2019x+2\right)=\left(2020x+4\right)\left(2021x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4074342x^2+6055x+2=4082420x^2+18184x+20\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\-8078x^2-12129x-18=0\end{matrix}\right.\)

Ta có: \(-8078x^2-12129x-18=0\)(2)

\(\Delta=\left(-12129\right)^2-4\cdot\left(-8078\right)\cdot\left(-18\right)=146531025\)

Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12129-12105}{2\cdot\left(-8078\right)}=\dfrac{-6}{4039}\left(nhận\right)\\x_2=\dfrac{12129+12105}{2\cdot\left(-8078\right)}=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-6}{4039};\dfrac{-3}{2}\right\}\)

9 tháng 2 2021

Bạn có chắc là bạn có giải đúng cách của lớp 8 không đấy?

25 tháng 10 2020

Đề:............

<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0

<=> (1 - 2018x).[(-1) + 2019x] = 0

Xét 2 trường hợp, ta có:

TH1: 1 - 2018x = 0          TH2: -1 + 2019x = 0

<=> 2018x = 1                 <=> 2019x = 1

<=> x = 1/2018                <=> x = 1/2019

Vậy x = 1/2018; 1/2019

9 tháng 11 2018

\(2018x-1+2019x\left(1-2018x\right)=0\)

\(-\left(1-2018x\right)+2019x\left(1-2018x\right)=0\)

\(\left(1-2018x\right)\left(-1+2019x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}1-2018x=0\\-1+2019x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2018}\\x=\frac{1}{2019}\end{cases}}}\)

8 tháng 11 2018

\(2018x^2-2019x+1=0\)

\(2018x^2-2018x-x+1=0\)

\(2018x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(2018x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2018x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2018}\end{cases}}}\)

8 tháng 11 2018

\(\frac{1}{2018}\)

NV
26 tháng 12 2020

ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)

\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

Do \(x>0\) nên hiển nhiên vế trái dương.

Pt vô nghiệm

26 tháng 12 2020

ĐKXĐ: x≥20202019>0x≥20202019>0

⇔√2020x−2019+√2019x−2020+2019(x+1)=0⇔2020x−2019+2019x−2020+2019(x+1)=0

⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0

Do x>0x>0 nên hiển nhiên vế trái dương.

Pt vô nghiệm

6 tháng 6 2018

Ta có 2019=2018+1=x+1

Thay 2019=x+1 vào đa thức P(x) ta có :

\(P\left(x\right)=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-.......+\left(x+1\right)\)

\(P\left(x\right)=x^{10}-x^{10}-x^9+x^9+x^8-.......+x+1\)

\(P\left(x\right)=\left(x^{10}-x^{10}\right)-\left(x^9-x^9\right)+\left(x^8-x^8\right)-....+x+1\)

\(P\left(x\right)=x+1=2018+1=2019\)

1 tháng 5 2019

Theo đề bài ta có 2019=2018+1=x+1

Thay 2019=x+1 vào đa thức P(x) ta có :

P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)

P(x)=x10−x10−x9+x9+x8−.......+x+1P(x)=x10−x10−x9+x9+x8−.......+x+1

P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1

P(x)=x+1=2018+1=2019

30 tháng 12 2019

mình nghĩ ra 2 cách bn thik cách nào thì làm nhé

Hỏi đáp ToánHỏi đáp Toán