Tìm x biết
2018x + 2019x = 2020x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2018};-\dfrac{2}{2019};-\dfrac{1}{505};\dfrac{-5}{2021}\right\}\)
Ta có: \(\dfrac{1}{2018x+1}-\dfrac{1}{2019x+2}=\dfrac{1}{2020x+4}-\dfrac{1}{2021x+5}\)
\(\Leftrightarrow\dfrac{2019x+2-2018x-1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{2021x+5-2020x-4}{\left(2020x+4\right)\left(2021x+5\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(2018x+1\right)\left(2019x+2\right)=\left(2020x+4\right)\left(2021x+5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4074342x^2+6055x+2=4082420x^2+18184x+20\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\-8078x^2-12129x-18=0\end{matrix}\right.\)
Ta có: \(-8078x^2-12129x-18=0\)(2)
\(\Delta=\left(-12129\right)^2-4\cdot\left(-8078\right)\cdot\left(-18\right)=146531025\)
Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{12129-12105}{2\cdot\left(-8078\right)}=\dfrac{-6}{4039}\left(nhận\right)\\x_2=\dfrac{12129+12105}{2\cdot\left(-8078\right)}=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{-6}{4039};\dfrac{-3}{2}\right\}\)
Đề:............
<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0
<=> (1 - 2018x).[(-1) + 2019x] = 0
Xét 2 trường hợp, ta có:
TH1: 1 - 2018x = 0 TH2: -1 + 2019x = 0
<=> 2018x = 1 <=> 2019x = 1
<=> x = 1/2018 <=> x = 1/2019
Vậy x = 1/2018; 1/2019
\(2018x-1+2019x\left(1-2018x\right)=0\)
\(-\left(1-2018x\right)+2019x\left(1-2018x\right)=0\)
\(\left(1-2018x\right)\left(-1+2019x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-2018x=0\\-1+2019x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2018}\\x=\frac{1}{2019}\end{cases}}}\)
\(2018x^2-2019x+1=0\)
\(2018x^2-2018x-x+1=0\)
\(2018x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(2018x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2018x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2018}\end{cases}}}\)
ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)
\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
Do \(x>0\) nên hiển nhiên vế trái dương.
Pt vô nghiệm
ĐKXĐ: x≥20202019>0x≥20202019>0
⇔√2020x−2019+√2019x−2020+2019(x+1)=0⇔2020x−2019+2019x−2020+2019(x+1)=0
⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0
Do x>0x>0 nên hiển nhiên vế trái dương.
Pt vô nghiệm
Ta có 2019=2018+1=x+1
Thay 2019=x+1 vào đa thức P(x) ta có :
\(P\left(x\right)=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-.......+\left(x+1\right)\)
\(P\left(x\right)=x^{10}-x^{10}-x^9+x^9+x^8-.......+x+1\)
\(P\left(x\right)=\left(x^{10}-x^{10}\right)-\left(x^9-x^9\right)+\left(x^8-x^8\right)-....+x+1\)
\(P\left(x\right)=x+1=2018+1=2019\)
Theo đề bài ta có 2019=2018+1=x+1
Thay 2019=x+1 vào đa thức P(x) ta có :
P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)
P(x)=x10−x10−x9+x9+x8−.......+x+1P(x)=x10−x10−x9+x9+x8−.......+x+1
P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1
P(x)=x+1=2018+1=2019
AIi trả lời được mình sẽ cho 3 tục từ các mục của mình
X= -2x10^99 (âm 2 nhân 10 mũ 99)