K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

a.x + 2/5 = 1 - 1/6

x + 2/5 = 5/6

x= 13/30

b.3/4 - 2/5 + 5/12

=7/20 + 5/12

=23/30

28 tháng 3 2022

a)\(x=\left(1-\dfrac{1}{6}\right)-\dfrac{2}{5}=\dfrac{5}{6}-\dfrac{2}{5}=\dfrac{13}{30}\)

b)\(=\dfrac{7}{20}+\dfrac{5}{12}=\dfrac{23}{30}\)

a) Ta có: \(8x\left(2x-3\right)-4x\left(4x+3\right)=72\)

\(\Leftrightarrow16x^2-24x-16x^2-12x=72\)

\(\Leftrightarrow-36x=72\)

hay x=-2

b) Ta có: \(\left(x+2\right)\left(x+4\right)-x\left(x+2\right)=104\)

\(\Leftrightarrow x^2+6x+8-x^2-2x=104\)

\(\Leftrightarrow4x=96\)

hay x=24

c) Ta có: \(\left(x-1\right)\left(x+4\right)-x\left(x-1\right)=308\)

\(\Leftrightarrow x^2+3x-4-x^2+x=308\)

\(\Leftrightarrow4x=312\)

hay x=78

d) Ta có: \(15x\left(2x-3\right)-\left(5x+2\right)\left(6x-5\right)=-22\)

\(\Leftrightarrow30x^2-45x-30x^2+25x-12x+10=-22\)

\(\Leftrightarrow-32x=-32\)

hay x=1

7 tháng 2 2020

Sao lại ngược ?Phương trình chứa ẩn ở mẫu

\(\Leftrightarrow4x-8+7⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{3;1;9;-5\right\}\)

12 tháng 1 2022

 x∈{3;1;9;−5}

19 tháng 12 2021

c: =>5x=40

hay x=8

19 tháng 12 2021

⇔5x=62+4

⇔5x=36+4

⇔5x=40

⇔x=8

 

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

NV
23 tháng 8 2021

\(8x^2+6x^3=2x^2\left(4+3x\right)\)

\(x^3-5x^2-4x+20=x^2\left(x-5\right)-4\left(x-5\right)=\left(x^2-4\right)\left(x-5\right)=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)

\(x^2-9y^2-4x+4=\left(x^2-4x+4\right)-\left(3y\right)^2=\left(x-2\right)^2-\left(3y\right)^2=\left(x-2-3y\right)\left(x-2+3y\right)\)

a: \(8x^2+6x^3=2x^2\left(4+3x\right)\)

b: \(x^3-5x^2-4x+20\)

\(=x^2\left(x-5\right)-4\left(x-5\right)\)

\(=\left(x-5\right)\left(x-2\right)\left(x+2\right)\)

c: \(x^2-4x+4-9y^2\)

\(=\left(x-2\right)^2-9y^2\)

\(=\left(x-2-3y\right)\left(x-2+3y\right)\)

23 tháng 8 2019

2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4 

Ta luôn có: (x - 3)2 \(\ge\)\(\forall\)x

=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3

Vậy MinA = -4 tại  x = 3

Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3

Ta luôn có: 4(x - 1)2 \(\ge\)\(\forall\)x

=> 4(x - 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

vậy MinB = 3 tại x = 1

Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8

Ta luôn có: 2(x + 1)2 \(\ge\)\(\forall\)x

=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinC = -8 tại x = -1

23 tháng 8 2019

1/

\(A=x^2-6x+5\)

\(A=x^2-2\cdot3x+3^2-3^2+5\)

\(A=\left(x-3\right)^2-3^2+5\)

\(A=\left(x-3\right)^2-9+5\)

\(A=\left(x-3\right)^2-4\)

mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)

\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)

với \(\left(x-3\right)^2=0;x=3\)

\(B=4x^2-8x+7\)

\(B=4\left(x^2-2x+\frac{7}{4}\right)\)

\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)

\(B=4\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)

\(\Rightarrow GTNNB=3\)

với \(\left(x-1\right)^2=0;x=1\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x-3\right)\)

\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)

\(C=\left(x+1\right)^2-8\)

\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow GTNNC=-8\)

với \(\left(x+1\right)^2=0;x=-1\)