Tìm giá trị lớn nhất cùa(x)= x+1/x với x<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
- Có: /x2 - 4/ >= 0
Vx
=>/x2 - 4/ - 2014 >= -2014 Vx
Dấu = xảy ra <=> x2 - 4 = 0
<=> x2 = 4
<=> x = 2
=> Amin =-2014 <=> x = 2
- Có -x2 <= 0
Vx
=> -x2 + 1 <= 1 Vx
Dấu = xảy ra <=> -x2 = 0
<=> x = 0
=>Amax = 1 <=> x = 0
- Có (5x+2)2 >= 0
Vx
5 - (5x+2)2 <= 5
Dấu = xảy ra <=> 5x+2 = 0
<=> 5x = -2
<=> x = -2/5
=> Bmax = 5 <=> x = -2/5
- Có-/x^2+7/ <= 0
Vx
=> 2015-/x^2+7/ <= 2015 Vx
Dấu = xảy ra <=> x^2+7 = 0
<=> x2 = -7
<=> x = \(\sqrt{-7}\)
=> C max = 2015 <=> x = \(\sqrt{-7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1 dễ bn tự làm nhé
câu 2 nhận xét (x-2)^2 >=0
=> 15-(x2)^2 >= 15
dấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2
câu 3 x-5 <0
=> x < 5 (1)
3-x <0
=> x>3 (2)
từ (1) và (2) => 3< x< 5
=> x= 4
câu 1: x=1
câu 2: vì \(^{\left(x-2\right)^2}\)\(\ge\)0
=> 15-\(\left(x-2\right)^2\)\(\le\)0
Dấu "=" xảy ra <=> x-2=0
<=> x=2
Câu 3: x-5 < 0 => x<5
và 3-x >0 =>x>3
=> 3<x<5
![](https://rs.olm.vn/images/avt/0.png?1311)
f(x) = -x2 + 2x + 15
Đồ thị hàm số là parabol quay xuống dưới, đỉnh parabol tại điểm (1,16), parabol cắt trục hoành tại 2 điểm có hoành độ là -3 và 5 (bạn tự vẽ hình)
Nhìn vào đồ thị suy ra giá trị lớn nhất của f(x) trong [-3,5] là 16 (khi x = 1) và giá trị nhỏ nhất là 0 (khi x = -3 hoặc x=5)
![](https://rs.olm.vn/images/avt/0.png?1311)
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
\(f\left(x\right)+2=x+\frac{1}{x}+2=\frac{x^2+2x+1}{x}=\frac{\left(x+1\right)^2}{x}\le0\forall x< 0\)
\(\Rightarrow f\left(x\right)\le-2\forall x< 0\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\) (thỏa mãn x < 0)
Vậy với x < 0 thì f(x) đạt GTLN là -2 khi x = -1