Tính tổng S = 1.2 + 3.4 +....+199.200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 1.2 + 2.3 + 3.4 + ... + 198.199 + 199.200
= 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 198(198 + 1) + 199(199 + 1)
= (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + ... + (198^2 + 198) + (199^2 + 199)
= (1 + 2 + 3 + 4....+ 198 + 199) + (1^2 + 2^2 + 3^2 + ...+ 198^2 + 199^2)
* Dễ chứng minh :
....1 + 2 + 3 +...+ n = n(n + 1)/2
.... 1^2 + 2^2 +...+ n^2 = [n(n + 1)(2n + 1)]/6
Suy ra : A = [199.(199 + 1)]/2 + [199.(199 + 1)(2.199 + 1)]/6 = 2666600
1.2+3.4+...+199.200
=2+12+...+39800
tự trả lời phần còn lại vì đây là bài tính tổng
A=1.2+2.3+...+199.200
3A = 1.2.3 + 2.3.3 +...+ 199.200.3
3A = 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 199.200. (201 - 198)
3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 199.200.201 - 198.199.200
3A = (1.2.3 + 2.3.4 +...+ 199.200.201) - (0.1.2 + 1.2.3 +...+ 198.199.200)
3A = 199.200.201 - 0.1.2
3A = 199.200.201
A = \(\frac{199.200.201}{3}=2666600\)
S = -5/1.2 + -5/2.3 + -5/3.4 + ... + -5/199.200
S= -5/1 - (-5)/2 +(-5)/2 - (-5)/3+....+ (-5)/199 - (-5)/200
S= -5/1 - (-5)/200
S= -5/1 + 5/200
S= -199/40
\(S=\frac{-5}{1\cdot2}+\frac{-5}{2\cdot3}+\frac{-5}{3\cdot4}+...+\frac{-5}{199\cdot200}\)
\(S=\frac{-5}{1}-\frac{-5}{2}+\frac{-5}{2}-\frac{-5}{3}+...+\frac{-5}{199}-\frac{-5}{200}\)
\(S=-5+\frac{5}{200}\)
\(S=-\frac{199}{40}\)
Bạn check lại nha, không chắc đâu =.=
Đặt A = 1.2 + 2.3 + 3.4 + .... + 199.200
⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 199.200.3
⇒ 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 199.200.( 201 - 198 )
⇒ 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 199.200.201 - 198.199.200
⇒ 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 198.199.200 - 198.199.200 ) + 199.200.201
⇒ 3A = 199.200.201
⇒ 3A = \(\frac{199.200.201}{3}\)
http://olm.vn/hoi-dap/question/200195.html
tick mik nha !