Phân tích đa thức thành nhân tử : (x2 – 5x)2 – 3x2 + 15x – 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.2x^3+6x=2x\left(x^2+3\right)\)
\(=2x\left(x^2+3\right)-2x\left(x^2+3\right)\)
\(=\left(x^2+3\right)\left(2x-2x\right)\)
\(b.5x\left(x-2\right)-3x^2\left(x-2\right)\)
\(=\left(x-2\right)\left(5x-3x^2\right)\)
\(c.3x\left(x-5y\right)-2y\left(5y-x\right)\)
\(=3x\left(x-5y\right)+2\left(x-5y\right)\)
\(=\left(x-5y\right)\left(3x+2\right)\)
\(d.y^2\left(x^2+y\right)-x^3-xy\)
\(=y^2\left(x^2+y\right)-x\left(x^2+y\right)\)
\(=\left(x^2+y\right)\left(y^2-x\right)\)
e. Cái bài này ghi lại đàng hoàng xíu nha t k hỉu
\(f.3x^2\left(y^2-2x\right)-15x\left(2x-y^2\right)\)
\(=3x^2\left(y^2-2x\right)+15x\left(y^2-2x\right)\)
\(=\left(y^2-2x\right)\left(3x^2+15x\right)\)
\(15x^2-34x+15\)
\(=15x^2-25x-9x+15\)
\(=5x\left(3x-5\right)-3\left(3x-5\right)\)
\(=\left(5x-3\right)\left(3x-5\right)\)
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Bài 1:
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^3-10x^2-6x\)
Bài 4:
a: =>3x+10-2x=0
=>x=-10
c: =>3x2-3x2+6x=36
=>6x=36
hay x=6
Bài 1:
\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)
Bài 4:
\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)
Bài 1:
\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)
a, \(x^2-5x+6=x^2+x-6x+6=x\left(x-1\right)-6\left(x-1\right)=\left(x-1\right)\left(x-6\right)\)
b, \(3x^2+9x-30=3\left(x^2+3x-10\right)=3\left(x^2-2x+5x-10\right)\)
\(=3\left[x\left(x-2\right)+5\left(x-2\right)\right]=3\left(x-2\right)\left(x+5\right)\)
c, \(x^2+7x+10=x^2+2x+5x+10=x\left(x+2\right)+5\left(x+2\right)=\left(x+2\right)\left(x+5\right)\)
a) \(5x^3-10x^2+15x=5x\left(x^2-2x+3\right)\)
b) \(x^2-3x+2=x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(x-1\right)\)
a) \(x^2+5x+4==x\left(x+1\right)+4\left(x+1\right)=\left(x+1\right)\left(x+4\right)\)
b) \(3x^2+4x-7=3x\left(x-1\right)+7\left(x-1\right)=\left(x-1\right)\left(3x+7\right)\)
c) \(x^2+7x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
\(\left(x^2-5x\right)^2-3x^2+15x-18\)
\(=\left(x^2-5x\right)^2-3\left(x^2-5x\right)-18\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+3\right)\)
\(=\left(x^2-5x+3\right)\left(x-6\right)\left(x+1\right)\)
\(=\left(x^2-5x\right)^2-3\left(x^2-5x\right)-18\\ =\left(x^2-5x\right)^2-6\left(x^2-5x\right)+3\left(x^2-5x\right)-18\\ =\left(x^2-5x\right)\left(x^2-5x-6\right)+3\left(x^2-5x-6\right)\\ =\left(x^2-5x+3\right)\left(x^2-5x-6\right)\\ =\left(x-6\right)\left(x+1\right)\left(x^2-5x+3\right)\)