Giari phương trình: \(x^4-5x^3+8x^2-5x+1=0\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
QT
0
15 tháng 5 2023
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}
CD
0
CD
2
28 tháng 8 2021
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
\(x^4-4x^3-x^3+4x^2+4x^2-4x-x+1=0\)0
\(x^3\left(x-4\right)-x^2\left(x-4\right)+4x\left(x-1\right)-\left(x-1\right)\)=0
\(\left(x^3-x^2\right)\cdot\left(x-4\right)+\left(4x-1\right)\cdot\left(x-1\right)=0\)
\(x^2\left(x-1\right)\cdot\left(x-4\right)+\left(4x-1\right)\cdot\left(x-1\right)=0\)
\(\left(x-1\right)\cdot\left(x^3-4x^2+4x-1\right)=0\)
\(x=1\)
Phương trình đã cho có dạng:
\(ax^4+bx^3+cx^2+a=0\left(a\ne0\right)\)
Đặt \(x+\frac{1}{x}=y\) ta đưa phương trình về dạng:\(y^2-5y+6=0\)
Giải phương trình bậc hai theo y ta có:\(y_1=2;y_2=3\)
Do đó:
\(x+\frac{1}{x}=2\Rightarrow x^2-2x+1=0\Rightarrow x_o=1\)
\(x+\frac{1}{x}=3\Rightarrow x^2-3x+1=0\Rightarrow x_1=\frac{3-\sqrt{5}}{2};x_2=\frac{3+\sqrt{5}}{2}\)
Vậy phương trình đã cho có ba nghiệm là:
\(x_o=1;x_1=\frac{3-\sqrt{5}}{2};x_2=\frac{3+\sqrt{5}}{2}\)(xo là nghiệm kép).