A=(3x+y)^2 - 3y(2x-1/3y) Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(9x^3y^2+3x^2y^2\)
\(=3x^2y^2\cdot3x+3x^2y^2\cdot1\)
\(=3x^2y^2\left(3x+1\right)\)
b: \(x^2-2x+1-y^2\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
a: \(=\left(4xy^2+2xy^2\right)+\left(3x^2y-3x^2y\right)=6xy^2\)
b: \(=xy\left(\dfrac{1}{5}+\dfrac{1}{3}\right)+xy^2\left(\dfrac{4}{3}-\dfrac{2}{5}\right)=\dfrac{8}{15}xy+\dfrac{14}{15}xy^2\)
d: \(=\dfrac{-4}{9}\cdot\dfrac{3}{2}\cdot xy^2\cdot xy^3=-\dfrac{2}{3}x^2y^5\)
a ) \(\left(3x-1\right)^2+\left(3x+1\right)^2+2\left(3x+1\right)\left(1-3x\right)\)
\(=\left(1-3x\right)^2+\left(3x+1\right)^2+2\left(3x+1\right)\left(1-3x\right)\)
\(=\left(1-3x+3x+1\right)^2\)
\(=2^2=4\)
b ) \(\left(2x-3y\right)^2+\left(2x+3y\right)^2+\left(2x-3y\right)\left(2x+3y\right)\)
\(=4x^2-12xy+9y^2+4x^2+12xy+9y^2+4x^2-9y^2\)
\(=\left(4x^2+4x^2+4x^2\right)+\left(9y^2+9y^2-9y^2\right)+\left(12xy-12xy\right)\)
\(=12x^2+9y^2\)
a,(2x-y)2+(2x+y)2=(2x2-2*2xy+y2)+(2x2+2*2xy+y2)
=2x2-4xy+y2+2x2+4xy+y2
=4x2+2y2
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(A=9x^2+6xy+y^2-6xy+y^2=9x^2-2y^2\)