cho 1/2×(1/a+1/b)( với a, b, c khác0)
Cmr a/b =a-c/c-b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Minh Triều @@ chẳng liên quan @@
đang hỏi toán lại đi ngắm avatar và bình :D
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của nguyen thanh chuc - Toán lớp 7 - Học toán với OnlineMath
Theo đề ta có:
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a,b,c khác 0 và b khác c.
CMR \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
=> \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
=> \(\dfrac{1}{c}:\dfrac{1}{2}=\dfrac{1}{a}+\dfrac{1}{b}\Rightarrow\dfrac{1}{c}.\dfrac{2}{1}\)
= \(\dfrac{\left(a+b\right)}{ab}\Rightarrow\dfrac{2}{c}=\dfrac{\left(a+b\right)}{ab}\)
=> 2ab=ac+bc (1)
Mà \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
=> \(a.\left(c-b\right)=b.\left(a-c\right)\)
=> ac-ab= ab-bc
=> 2ab+ ac + bc (2)
Từ (1) và (2) ta suy ra được điều cần CM là;
\(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
thiếu đề -_-
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow c=\frac{2ab}{a+b}\)
\(\frac{a-c}{c-b}=\frac{a-\frac{2ab}{a+b}}{\frac{2ab}{a+b}-b}=\frac{\frac{a^2+ab-2ab}{a+b}}{\frac{2ab-b^2-ab}{a+b}}=\frac{a^2+ab-2ab}{-b^2-ab+2ab}=\frac{a.\left(a-b\right)}{b.\left(-b+a\right)}=\frac{a}{b}\)