cmr : có vô số số nguyên tố có dạng 3n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Vì nếu số đó lớn hơn 3 có dạng là 3n thì số đó chia hết cho 3 => Hợp số
=> Số đó phải có dạng 3n + 1( chia 3 dư 1) hoặc 3n - 1
Với 3n - 1 tương đương với 3(n-1) + 2 ( chia 3 dư 2)
+) Chưa chắc đã là số nguyên tố , Giả sử n lẻ => 3n lẻ => 3n - 1 hoặc 3n + 1 chẵn => Hợp số
1,
chúng ta đều biết số nguyên tố là số không chia hết cho bât kỳ số nào trừ 1 và chính số đó.
từ đó ta có công thức tạo số nguyên tố như sau: tích tất cả các số nguyên tố đã biết cộng một (1) thì sẽ cho ta một số nguyên tố mới.
và nếu ta lặp lại thuật toán trên vô số lần ( với mỗi lần ta thêm số nguyên tố mới vào) ta sẽ có vô số số nguyên tố
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)