A = 3 + 31 + 32 + .......... + 349 + 350
cảm ơn ! !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=1+3+(3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9)+...+(3^{46}+3^{47}+3^{48}+3^{49})\)
\(=4+3^2(1+3+3^2+3^3)+3^6(1+3+3^2+3^3)+....+3^{46}(1+3+3^2+3^3)\)
\(=4+3^2.40+3^6.40+....+3^{46}.40\)
\(=10(4.3^2+4.3^6+..+4.3^{46})+4\)
Vậy $A$ có tận cùng là $4$
\(\Leftrightarrow-B=1+3+3^2+...+3^{49}\\ \Leftrightarrow-3B=3+3^2+3^3+...+3^{50}\\ \Leftrightarrow-3B-B=3+3^2+...+3^{50}-1-3-...-3^{49}\\ \Leftrightarrow-4B=3^{50}-1\\ \Leftrightarrow B=\dfrac{1-3^{50}}{4}\)
Đây là toán lớp 3 á!!!!
Mà bn có vt sai đề bài ko? Mk tính ko ra
a. 32 x (650 + 349 + 1 )
= 32 x 1000
= 32 000
b. 45 x ( 1273 - 201 - 72)
= 45 x 1000
= 45 000
a. 650 x 32 + 349 x 32 + 32
= (650 + 349 + 1) x 32
= 1000 x 32
= 32000.
b. 1273 x 45 - 201 x 45 - 72 x 45
= (1273 - 201 - 72) x 45
= 1000 x 45
= 45000.
\(A=3+3^2+3^3+...+3^{60}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)
A=3+32+33+...+360
A=3+32+33+...+360⇒A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)⇒A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)
⇒A=3(1+3+32+33)+35(1
Câu 31:
A có CTHH: M2X.
Ta có: P = E (do nguyên tử trung hòa về điện)
- Tổng số hạt trong A là 116.
⇒ 2.2PM + 2NM + 2PX + NX = 116 (1)
- Trong đó, số hạt mang điện nhiều hơn số hạt không mang điện là 36.
⇒ 2.2PM + 2PX - 2NM - NX = 36 (2)
- Khối lượng nguyên tử X lớn hơn M là 9.
⇒ PX + NX - PM - NM = 9 (3)
- Tổng số hạt trong X2- nhiều hơn trong M+ là 17.
⇒ (2PX + NX + 2) - (2PM + NM - 1) = 17 (4)
Từ (1), (2), (3) và (4) \(\Rightarrow\left\{{}\begin{matrix}P_M=E_M=11\\N_M=12\\P_X=E_X=16\\N_X=16\end{matrix}\right.\)
⇒ AM = 11 + 12 = 23
AX = 16 + 16 = 32
Câu 32:
Ta có: \(\%^{37}Cl=\dfrac{3.37.\left(100-73\right)\%}{3.37.\left(100-73\right)\%+3.35.73\%+27}.100\%\approx22,43\%\)
a)
\(3S=3^2+3^3+...+3^{81}\)
\(3S-S=\left(3^2+3^3+...+3^{81}\right)-\left(3+3^2+...+3^{80}\right)\)
\(2S=3^{81}-3\)
\(S=\dfrac{3^{81}-3}{2}\)
b) sai đề?
c)
\(S=\left(3^1+3^2+...+3^4\right)+\left(3^5+3^6+...+3^8\right)+...+\left(3^{77}+3^{78}+3^{79}+3^{80}\right)\)
\(S=3^1\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+3^{77}\left(1+3+9+27\right)\)
\(S=\left(3^1+3^5+...+3^{77}\right)\cdot40\)
Do đó S chia hết cho 40
a) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
⇒ 3S = 3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹
⇒ 2S = 3S - S
= (3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹) - (3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰)
= 3⁸¹ - 3
⇒ S = (3⁸¹ - 3)/2
b) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
= (3 + 3² + 3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸ + 3⁹ + 3¹⁰) + ... + 3⁷⁶ + 3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)
= 3(1 + 3 + 3² + 3³ + 3⁴) + 3⁶(1 + 3 + 3² + 3³ + 3⁴) + ... + 3⁷⁶(1 + 3 + 3² + 3³ + 3⁴)
= 3.121 + 3⁶.121 + ... + 3⁷⁶.121
= 121.(3 + 3⁶ + ... + 3⁷⁶)
= 11.11(3 + 3⁶ + ... + 3⁷⁶) ⋮ 11
Vậy S ⋮ 11
c) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
= (3 + 3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷ + 3⁸) + ... + (3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)
= 3(1 + 3 + 3² + 3³) + 3⁵(1 + 3 + 3² + 3³) + ... + 3⁷⁷(1 + 3 + 3² + 3³)
= 3.40 + 3⁵.40 + ... + 3⁷⁷.40
= 40(3 + 3⁵ + ... + 3⁷⁷) ⋮ 40
Vậy S ⋮ 40
A= (1/31 + 1/32+ ...+ 1/40) +(1/41 +1/42 +...+ 1/50) + (1/51 +1/52 +...+1/60)
A>10/40 + 10/50 + 10/60
A> 1/4 + 1/5 + 1/6
Ta thấy 1/4 + 1/6 = 10/24> 10/25 = 2/5
suy ra A > 1/5+2/5 = 3/5 suy ra đccm