1] TÍNH
D = 30+31+32+33+.....+32018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
3A=3+3^2+3^3+....+3^2020
3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
2A= 3^2020-1
⇒ A =( 3^2020-1):2
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
⇒3A=3+3^2+3^3+....+3^2020
⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
⇒2A= 3^2020-1
⇒ A =( 3^2020-1):2
\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)
\(=4\left(1+3^2+...+3^{2018}\right)⋮4\)
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)
\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)
Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)
Vậy \(A>B.\)
Chúc bạn học tốt.
\(3B=3+3^2+3^3+...+3^{2019}\\ 2B=3^{2019}-1\\ B=\dfrac{3^{2019}-1}{2}\)
\(9B=3^2+3^4+...+3^{2020}\)
\(\Leftrightarrow8B=3^{2018}-1\)
\(\Leftrightarrow B=\dfrac{3^{2018}-1}{8}\)
(31+39)+(32+38)+(33+37)+(34+36)+(30+31+35)=70+70+70+70+96=376
\(D=3^0+3^1+3^2+3^3+...+3^{2018}\)
\(\Rightarrow3D=3^1+3^2+3^3+3^4+....+3^{2018}+3^{2019}\)
\(\Rightarrow3D-D=\left(3^1+3^2+3^3+3^4+...+3^{2018}+3^{2019}\right)\)\(-\left(3^0+3^1+3^2+3^3+...+3^{2018}\right)\)
\(\Rightarrow2D=3^{2019}-1\)
\(\Rightarrow D=\frac{3^{2019}-1}{2}\)