Phân tích đa thứ thành nhân tử
(a+b+c)^3-(a+b-c)^3-(b+c-a)^3-(c+a-b)^3
Cảm ơn nhiều! ^.^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có
a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]
mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab
bạn gửi lời kết bạn nhé mình hết ượt rui ok
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Leftrightarrow x+y+z=a+b+c\)
Do đó \(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(\Leftrightarrow A=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ \Leftrightarrow A=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow A=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(c+a-b+a+b-c\right)\\ \Leftrightarrow A=3\cdot2b\cdot2c\cdot2a=24abc\)
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)
\(=\left(ab^3-a^3b\right)+\left(bc^3-ac^3\right)+\left(a^3c-b^3c\right)\)
\(=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)\)
\(=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c-abc+b^2c\right)\)
Ta có: VT=(a+b+c)3−a3−b3−c3VT=(a+b+c)3−a3−b3−c3
=[(a+b+c)3−a3]−(b3+c3)=[(a+b+c)3−a3]−(b3+c3)
=(b+c)[(a+b+c)2+(a+b+c)a+a2]−(b+c)(b2−bc+c2)=(b+c)[(a+b+c)2+(a+b+c)a+a2]−(b+c)(b2−bc+c2)
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=3(b+c)[a(a+b)+c(a+b)]=3(b+c)[a(a+b)+c(a+b)]
=3(a+b)(b+c)(c+a)=VP=3(a+b)(b+c)(c+a)=VP (Đpcm)
Thật ra mình làm theo đề thấy nó đáng ra phải là chứng minh chứ ko phải phân tích . chúc học tốt!