tìm x biết
a 2x - 15 = -13
b GTTĐ x = 3
c 32x+1 = 243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x+56:14=60\)
\(\Rightarrow8x+4=60\)
\(\Rightarrow8x=56\)
\(\Rightarrow x=\dfrac{56}{8}\)
\(\Rightarrow x=7\)
b) Mình làm rồi nhé !
c) \(41-2^{x+1}=9\)
\(\Rightarrow2^{x+1}=41-9\)
\(\Rightarrow2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
d) \(3^{2x-4}-x^0=8\)
\(\Rightarrow3^{2x-4}-1=8\)
\(\Rightarrow3^{2x-4}=9\)
\(\Rightarrow3^{2x-4}=3^2\)
\(\Rightarrow2x-4=2\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
g) \(65-4^{x+2}=2014^0\)
\(\Rightarrow65-4^{x+2}=1\)
\(\Rightarrow4^{x+2}=64\)
\(\Rightarrow4^{x+2}=4^3\)
\(\Rightarrow x+2=3\)
\(\Rightarrow x=1\)
i) \(120+2\left(4x-17\right)=214\)
\(\Rightarrow2\left(4x-17\right)=214-120\)
\(\Rightarrow2\left(4x-17\right)=94\)
\(\Rightarrow4x-17=47\)
\(\Rightarrow4x=47+17\)
\(\Rightarrow4x=64\)
\(\Rightarrow x=16\)
a: \(8x+56:14=60\)
=>8x+4=60
=>8x=60-4=56
=>x=56/8=7
b: \(5^{2x-3}-2\cdot5^2=5^2\cdot3\)
=>\(5^{2x-3}=5^2\cdot3+2\cdot5^2=5^3\)
=>2x-3=3
=>2x=6
=>x=3
c: \(41-2^{x+1}=9\)
=>\(2^{x+1}=41-9=32\)
=>x+1=5
=>x=4
d: \(3^{2x-4}-x^0=8\)
=>\(3^{2x-4}-1=8\)
=>\(3^{2x-4}=8+1=9\)
=>2x-4=2
=>2x=6
=>x=3
g: \(65-4^{x+2}=2014^0\)
=>\(65-4^{x+2}=1\)
=>\(4^{x+2}=65-1=64\)
=>x+2=3
=>x=1
i: 120+2(4x-17)=214
=>2(4x-17)=214-120=94
=>4x-17=94/2=47
=>4x=64
=>\(x=\dfrac{64}{4}=16\)
a: Ta có: \(2^{x-1}=32\)
\(\Leftrightarrow x-1=5\)
hay x=6
b: Ta có: \(3^{2x+1}=81\)
\(\Leftrightarrow2x+1=4\)
\(\Leftrightarrow2x=3\)
hay \(x=\dfrac{3}{2}\)
c: Ta có: \(2^x-26=6\)
\(\Leftrightarrow2^x=32\)
hay x=5
d: Ta có: \(27\cdot3^x=243\)
\(\Leftrightarrow3^x=9\)
hay x=2
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
a) 2x = 16 <=>x=8
b) 3x+1 = 9x <=>9x-3x=1
<=>6x=1 <=>x=1/6
c) 23x+2 = 4x+5 <=>23x-4x=5-2
<=>19x=3 <=>x=3/19
d) 32x-1 = 243 <=>32x=244
<=>x=61/8
a/ 2x=16
x=8
b/ 3x+1=9x
3x-9x=-1
-6x=-1
x=1/6
c/ 23x+2=4x
23x-4x=-2
19x=-2
x=-2/19
d/ 32x-1=243
32x=244
x=61/8
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
a: Ta có: \(3^{2x+1}< 27\)
\(\Leftrightarrow2x+1< 3\)
\(\Leftrightarrow x< 1\)
hay x=0
a, 2x-15 =-13
=> 2x = -13 +15= 2
=> x=2:2=1
b, /x/=3
=> x=3 hoặc x= -3
c, 3^2x+1 =243
=> 3^2x+1 = 3^5
=> 2x+1=5
=> 2x=4
=> x=2
Mình nhanh nhất nè
a) 2x - 15 = -13
<=> 2x = -13 + 15
<=> 2x = 2
<=> x = 2 : 2 = 1
b) lxl = 3
=> x = 3
=> x = -3
c) 32x+1 = 243
<=> 32x+1 = 35
<=> 2x + 1 = 5
<=> 2x = 5 - 1
<=> 2x = 4
<=> x = 4 : 2 = 2
#Học tốt!!!
~NTTH~