Tìm giá trị nhỏ nhất của:
\(M=x^2-4x+y^2-3y+2018\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=6x^2+4y^2+6xy+\left(xy+\dfrac{4x}{y}\right)+\left(3xy+\dfrac{3y}{x}\right)+2022\)
\(M\ge3x^2+y^2+3\left(x+y\right)^2+2\sqrt{\dfrac{4x^2y}{y}}+2\sqrt{\dfrac{9xy^2}{x}}+2022\)
\(M\ge3\left(x^2+1\right)+\left(y^2+4\right)+3\left(x+y\right)^2+4x+6y+2015\)
\(M\ge6x+4y+3\left(x+y\right)^2+4x+6y+2015\)
\(M\ge3\left(x+y\right)^2+10\left(x+y\right)+2015\ge3.3^2+10.3+2015=2072\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0
--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0
--> (x+y+2)^2 + y^2 = 1
-->(x+y+2)^2 <= 1 ( vì y^2 >=1)
--> -1 <= x+y+2 <=1
--> 2015 <= x+y+2018 <= 2017
hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3
Q<=2017, dau bang xay ra khi x+y+2=1 --> x+y=-1
Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3
giá trị lớn nhất của Q là 2017 khi x+y=-1
\(\left(x^2+4x+4\right)+\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{8055}{4}\ge\frac{8055}{4}\)
\(x^2+y^2+4x-y+2018\)
\(=x^2+4x+4+y^2-y+\frac{1}{4}+\frac{8055}{4}\)
\(=\left(x+2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{8055}{4}\ge\frac{8055}{4}\forall x;y\)
Dấu"=" xả ra<=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}}}\)
Vậy.
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
Ta có : \(A=x^2+4x+2y^2+2xy+2018\)
\(\RightarrowđểAmin\)thì \(x^2+4x+2y^2+2xy=0\)
\(\Rightarrow Amin=0+2018=2018\)
\(\Rightarrow Amin=2018\)
\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)
\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)
\(=16x^2y^2-2xy+12\)
Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)
Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)
Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)
Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)
Đẳng thức xảy ra khi x = y = 1/2
Vậy max B = 25/2 khi (x;y) = (1/2;1/2)
\(M=x^2-4x+y^2-3y+2018\)
\(M=x^2-4x+4+y^2-3y+\frac{9}{4}+2015,75\)
\(M=\left(x^2-2\cdot x\cdot2+2^2\right)+\left[y^2-2\cdot y\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]+2015,75\)
\(M=\left(x-2\right)^2+\left(y-\frac{3}{2}\right)^2+2015,75\)
Vì \(\left(x-2\right)^2\ge0\forall x;\left(y-\frac{3}{2}\right)^2\ge0\forall y\)
\(\Rightarrow M\ge0+0+2015,75=2015,75\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{3}{2}\end{cases}}}\)
Vậy \(M_{min}=2015,75\Leftrightarrow\hept{\begin{cases}x=2\\y-\frac{3}{2}\end{cases}}\)
\(M=x^2-4x+y^2-3y+2018\)
\(M=\left(x^2-2.x.2+2^2\right)+\left(y^2-2.y.1,5+1,5^2\right)+2011,75\)
\(M=\left(x-2\right)^2+\left(y-1,5\right)^2+2011,75\)
Ta có: \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(y-1,5\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-2\right)^2+\left(y-1,5\right)^2+2011,75\ge2011,75\)
\(M=2011,75\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1,5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2=0\\y-1,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1,5\end{cases}}\)
Vậy \(M_{min}=2011,75\Leftrightarrow\hept{\begin{cases}x=2\\y=1,5\end{cases}}\)