1 . Tìm chữ số a ; b ; c sao cho 579abc chia hết cho 5; 7; 9.
2 . Tìm chữ số a;b sao cho a nhân aba chia hết cho 33 ; b nhân ab cộng ba chia hết cho 37 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a+b=54\Rightarrow a=54-b\)
Thay vào \(a+c=45\) \(\Rightarrow54-b+c=45\)
Lại có: \(b+c=63\Rightarrow c=63-b\)
Thay vào \(54-b+c=45\Rightarrow54-b+63-b=45\)
Tìm được b:
\(\Rightarrow117-2\times b=45\)
\(\Rightarrow2\times b=117-45\)
\(\Rightarrow2\times b=72\)
\(\Rightarrow b=72:2=36\)
Sau khi tìm được b ta thay \(b=36\) vào \(a+b=54\)
Ta tìm được a:
\(a+36=54\)
\(\Rightarrow a=54-36\)
\(\Rightarrow a=18\)
Sau khi tìm được a ta thay \(a=18\) vào \(a+c=45\)
Ta tìm được c:
\(\Rightarrow18+c=45\)
\(\Rightarrow c=45-18\)
\(\Rightarrow c=27\)
Vậy 3 số a,b,c là \(18,36,27\)
a) Ta có hệ thống phương trình:
a + b = 54
b + c = 63
a + c = 45
The first method of the first method has been:
2a + b + c = 117
Trừ phương thức thứ ba ra khỏi phương thức trên ta được:
2a + b + c - (a + c) = 117 - 45
a + b = 72
Thay a + b = 72 vào phương trình đầu tiên ta được:
72 = 54
một = 18
Thay a = 18 vào phương trình a + b = 54 ta được:
18 + b = 54
b = 36
Thay a = 18 và b = 36 vào phương trình b + c = 63 ta được:
36 + c = 63
c = 27
Do đó a = 18, b = 36, c = 27.
b) Call number to find is xy, ta has:
10x + y + 20 + xy = 292
Rút gọn phương trình, ta được:
10x + y + xy = 272
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 8 và y = 4 thỏa mãn phương trình:
10(8) + 4 + 8(4) = 80 + 4 + 32 = 116
Vậy số đó là 84.
c) Call number to find is xy, ta has:
10x + y + 5 = xy + 428
Rút gọn phương trình, ta được:
10x + y - xy = 423
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 7 và y = 9 thỏa mãn phương trình:
10(7) + 9 - 7(9) = 70 + 9 - 63 = 16
Vậy số đó là 79.
d) Call hai số cần tìm là x và y, ta có:
(x + y)/2 = 45
y = 2x
Thay phương trình thứ hai vào phương trình thứ nhất, ta được:
(x + 2x)/2 = 45
3x/2 = 45
3x = 90
x = 30
Thay x = 30 vào phương trình thứ hai, ta được:
y = 2(30)
y = 60
Vậy hai số là 30 và 60.
Bài 1:
\(N=\dfrac{1}{5}+\dfrac{1}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{2005}-\dfrac{1}{2010}\right)\)
\(=\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{401}{2010}=\dfrac{2411}{10050}\)
BÀI 2 :
Số tự nhiên chia hết cho 5 là số có tận cùng là 5 hoặc 0.
Vì A là số thập phân nên chữ số tận cùng ko thể là 0. Vậy chữ số tận cùng của A là 5.
Tổng 3 chữ số còn lại là:
31-5=26
Nếu 3 chữ số đó đều là 9 thì tổng 3 chữ số đó là:
9×3=27
Tổng tăng lên :
27-26=1
Vậy phải có 1 chữ số là 9-1=8.
Suy ra A có thể là:
– 899,5
– 989,5
– 998,5
b)
ab chia 5 dư 2 thì b chỉ có thể là 7 hoặc 2.
Những số tự nhiên có 2 chữ số có tận cùng là 2 và chia hết cho 9 là 72.
Những số tự nhiên có 2 chữ số có tận cùng là 7 và chia hết cho 9 là 27.
Vậy ab =27;72.
1) Gọi d = ƯCLN của tất cả các số lập được từ 6 chữ số trên
=> Hiệu hai số bất kì trong đó cũng chia hết cho d
Ta có: 123465 - 123456 = 9 => 9 chia hết cho d => d có thể bằng 1; 3; 9
Mà Tổng các chữ số của mỗi số lập được đều bằng 1 + 2+ 3+ 4+5+6 = 21 => Các số đó chia hết cho 3, không chia hết cho 9
=> d = 3
Vậy ƯCLN của các số lập được bằng 3
2)
+) Nếu các chữ số a; b đã cho đều khác 0 thì từ các chữ số a; b; 5; 8 ta sẽ lập được 24 số, vì
- Có 4 cách chọn chữ số hàng nghìn
- Có 3 cách chọn chữ số hàng trăm
- Có 2 cách chọn chữ số hàng chục
- Có 1 cách chọn chữ số hàng đơn vị
=> có tất cả là: 4 x 3 x 2 x 1 = 24 số
Theo đề bài, chỉ lập được 18 số nên trong a; b có 1 chữ số bằng 0. Coi b = 0
+) Ta lập được 18 số là:
a058; a085; a508; a580; a850;a805
50a8;508a; 580a;58a0;5a80;5a08
85a0;850a;80a5;805a;8a50;8a05
Trong 18 số trên, ta thấy: Chữ số a; 5; 8 đều xuất hiện ở hàng nghìn 6 lần; và a; 0;5;8 đều xuất hiện ở mỗi hàng trăm; chục ; đơn vị 4 lần
Theo phân tích cấu tạo số ta có: Tổng 18 số trên là:
(a + 5 + 8) x 6 x 1000 + (a + 0 + 5 + 8) x 4 x 100 + (a + 0 + 5 + 8) x 4 x 10 + (a + 0 + 5 + 8) x 4 x 1 = (a+13) x 6444
Theo bài cho ta có: (a+13) x 6444 = 90 216
=> a+ 13 = 90 216 : 6444 = 13 => a = 1
Vậy a = 1; b = 0 (hoặc a = 0 ; b = 1)
mỗi số có 6 lần giá trị nghìn và 2 lần giá trị trăm, chục, đơn vị
ta có số 5 và 8 là các giá trị đã biết
5=
(6 x 5000)+(2 x 500)+(2 x 50)+(2 x 5)=31110
tương tự với 8
8=49776
49776+31110=80886
theo đề bài tổng là 90216
90216 - 80886= 9330
=> (6 x 1000)+(2 x 100)+(2 x 10)+(2 x 1)=6222
vậy a và b không lớn hơn 1
0= 3108
6222+3108 = 9330
=> a=0 b=1
Bài 1 :
a) \(\overline{abab}+\overline{ab}=2550\)
\(1000xa+100xb+10xa+b+10xa+b=2550\)
\(1000xa+10xa+10xa+100xb+b+b=2550\)
\(1000xa+100xb+20xa+2b=2000+500+50+5\)
\(\Rightarrow a=2;b=5\) ta được \(200=2550\left(vô.lý\right)\)
Nên không có \(\left(a;b\right)\) thỏa đề bài.
b) \(\overline{ab}x\overline{aba}=\overline{abab}\)
\(\left(10xa+b\right)x\left(100xa+10xb+a\right)=1000xa+100xb+10xa+b\)
\(1000xaxa+100xaxb+10xaxa+100xaxb+10xbxb+axb=1000xa+100xb+10xa+b\)
\(1000xaxa+200xaxb+10x\left(axa+bxb\right)+axb=1000xa+100xb+10xa+b\)
\(\Rightarrow\left\{{}\begin{matrix}axa=a\\2xaxb=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\2xb=b\left(loại\right)\end{matrix}\right.\)
Nên không có \(\left(a;b\right)\) thỏa đề bài.
Bài 2 :
Số tự nhiên có 3 chữ số là \(\overline{abc}\left(a;b;c\inℕ\right)\)
Khi xóa chữ số hàng trăm, ta có :
\(\overline{abc}=9x\overline{bc}\)
\(100xa+10xb+c=9x\left(10xb+c\right)\)
\(100xa+10xb+c=90xb+9xc\)
\(100xa+10xb+c=\left(100-10\right)xb+\left(10-1\right)xc\)
\(100xa+10xb+c=100xb-10xb+10xc-c\)
\(100xa+10xb+c=100xb+10x\left(c-b\right)-c\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c-b\\c=0\end{matrix}\right.\) \(\Rightarrow a=b=c=0\left(vô.lý\right)\)
Nên không có \left(a;b\right)(a;b) thỏa đề bài.
gọi số cần tìm là abc
Theo bài ra ta có:
abc - 594= cba (a=4.c)
100.a +10.b +c- 594= 100.c+10.b +a
100.4.c +10.b+c-594=100.c+10.b +4.c
401.c +10.b -594=104.c+10.b
401.c-104.c+10.b-10.b=594
297.c=594
c=2 => a=8. b lớn hơn a mà b là chữ số => b=9
Vậy số cần tìm là 892
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
Cau 1)
Tu 3 - 9 co 1x7=7 chu so
Tu 10 - 99 co 2x90=180 chu so
Tong so chu so cua so co mot chu so va so co hai chu so la 180+7=187chu so
So chu so cua so co ba chu so la
787 - 187 = 600 chu so
Vay so x can tim la
600:3-1=199
Cau 2)
Goi so can tim la abcd
Khi xoa 2 chu so cuoi ta duoc so be nhat co 2 chu so ( = 10 ) => ab = 10
Khi xoa 2 chu so dau ta duoc so le lon nhat co 2 chu so khac nhau ( = 97 ) => cd = 97
Vay so can tim la 1097
còn cái nịt