K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

Để \(\frac{3x-2}{x^2-9}=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

13 tháng 8 2016

Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)

22 tháng 6 2019

Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt

a) \(|3x-1|-|2x+3|=0\left(1\right)\)

Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

       \(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)

Lập bảng xét dấu :

3x-1 2x+3 -3/2 1/3 0 0 - - - + + +

+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(1-3x\right)-\left(-2x-3\right)=0\)

\(1-3x+2x+3=0\)

\(-x+4=0\)

\(x=4\)( chọn )

+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(1-3x\right)-\left(2x+3\right)=0\)

\(1-3x-2x-3=0\)

\(-5x-2=0\)

\(x=\frac{-2}{5}\)( chọn )

+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(3x-1\right)-\left(2x+3\right)=0\)

\(3x-1-2x-3=0\)

\(x-4=0\)

\(x=4\)( chọn )

Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)

22 tháng 6 2019

Bài 2:

a) Ta có: \(|2x+1|\ge0\forall x\)

\(\Rightarrow|2x+1|-7\ge0-7\forall x\)

Hay \(A\ge-7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)

b) ko biết

c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)

Hay \(C\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)

( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )

27 tháng 9 2024

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

27 tháng 9 2024

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9