Tính : \(A=2^0+2^3+2^5+...+2^{99}.\). Giá trị của A là ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 20 + 23 + 25 + ....+ 299
=> 2A = 21 + 24 + 26 + ....+ 2100
=> 2A - A = ( 21 + 24 + 26 + ...+2100 ) - ( 20 + 23 + ...+ 299)
=> A = 2 - 299
A=2^0+2^3+2^5+...+2^99
nhân cả vế với 4=2^2
4A=2^2+2^5+2^7+...+2^99+2^101
trừ cho nhau (dưới trừ trên)
3A= 2^2-2^3+0+..+0+2^101 (các số giữa triệt tiêu hết)
3A=2^101-4
A=(2^101-4)/3
Giá trị x trong phép tính 10 - 2x = 4 là :
A.5 B.2 C.3 D.7
Kết quả sắp xếp các số -2 ; -3 ; -102 ; -99 theo thứ tự tăng dần là :
A -2 ; -3 ; -99 ; -102
B -102 ; -99 ; -3 ; -2
C -99 ; -102 ; -3 ; -2
D -102 ; -99 ; -2 ; -3
A = 1 – 2 + 3 – 4 + 5 – 6 +……… + 99 – 100 + 101
A = ( 1 + 3 + 5 + 7 …+ 101) – ( 2 + 4 + 6 + ….. + 100)
*Từ 1 đến 101 có: (101 – 1) : 2 + 1 = 51 số hạng nên:
1 + 3 + 5 + 7 +... +101 = (1 + 101) x 51 : 2 = 2601
*Từ 2 đến 100 có : (100 – 2) : 2 + 1 = 50 số hạng nên:
2 + 4 + 6 + 8 +.... + 100 = ( 2 + 100) x 50 : 2 = 2550
Ta có : A = 2601 – 2550
Vậy : A = 51
Đáp số: A = 51
\(A=2^0+2^3+2^5+...+2^{99}\)
\(A\cdot2^2=2^2+2^5+2^7+...+2^{101}\)
\(A\cdot3=2^2-1+2^{99}\)
\(\text{A}=1+2^3+2^5+....+2^{99}\)
\(4\text{A}=2+2^5+2^8+.....+2^{101}\)
\(4\text{A}-\text{A}=\left(2+2^5+2^8+....+2^{101}\right)-\left(1+2^3+...+2^{99}\right)\)
\(3\text{A}=2^{101}+2^2-2^3+2^0\)