K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

qui đồng ps ta dc

1/n-1/n+1=n+1-n/n(n+1)=1/n(n+1)

11 tháng 10 2019

nhanh tay

NV
19 tháng 4 2021

\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{2n\left(n+1\right)\left(n+2\right)}=\dfrac{\left(n+2\right)-n}{2n\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{n+2}{2n\left(n+1\right)\left(n+2\right)}-\dfrac{n}{2n\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}\left[\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

25 tháng 2 2015

Sau này lên lớp cao hơn bạn sẽ phải sử dụng dạng này nhiều để làm bài toán giải phương trình nên mình khuyên bạn nên nắm vững dạng bài này nhé !! Trân trọng !!

27 tháng 6 2017

\(\frac{1}{n.\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)

\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)

\(=\frac{1}{n}-\frac{1}{n+1}\left(đpcm\right)\)

2 tháng 4 2015

ta có : 1/n - 1/ n+1 =n+1/n.(n+1) - n/n(n+1)

                              =1/n(n+1)

Vậy ta có đpcm

 

2 tháng 4 2015

\(\frac{1}{n}-\frac{1}{n}+1=0+1=1\)    (1)

\(\frac{1}{n}.\left(n+1\right)=\frac{1}{n}.n+\frac{1}{n}.1=1+\frac{1}{n}\)        (2)

Vì n là mẫu nên n\(\ne\)0. Vậy từ (1) và (2) suy ra không chứng minh được.

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

10 tháng 6 2020

Bạn xem lại đề bài!

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

7 tháng 3 2018

rftbdcrhydryfy

7 tháng 3 2018

ta có :

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\cdot\left(n+1\right)}-\frac{n}{n\cdot\left(n+1\right)}=\frac{n+1-n}{n\cdot\left(n+1\right)}=\frac{1}{n\cdot\left(n+1\right)}\)

\(\Rightarrowđpcm\)