Ta có: n3−8n2+2n⋮(n2+1)⇔(n3+n)−(8n2+8)+n+8⋮n2+1⇔n(n2+1)−8(n2+1)+n+8⋮n2+1
⇒n+8⋮n2+1⇒(n−8)(n+8)⋮n2+1⇔(n2+1)−65⋮n2+1
⇒65⋮n2+1
mà dễ dàng nhận thấy n2+1≥1 nên n2+1ϵ{1;5;13;65} hay n2ϵ{0;4;12;64} ⇒nϵ{−8;−2;0;2;8}
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị n={−8;0;2}
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Ta có: n3−8n2+2n⋮(n2+1)⇔(n3+n)−(8n2+8)+n+8⋮n2+1⇔n(n2+1)−8(n2+1)+n+8⋮n2+1
⇒n+8⋮n2+1⇒(n−8)(n+8)⋮n2+1⇔(n2+1)−65⋮n2+1
⇒65⋮n2+1
mà dễ dàng nhận thấy n2+1≥1 nên n2+1ϵ{1;5;13;65} hay n2ϵ{0;4;12;64}
⇒nϵ{−8;−2;0;2;8}
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị n={−8;0;2}
Vậy n={-8;0;2} thì \(n^3-8n^2+2n\) chia hết n2+1