tìm x,y,z biết x+y+z=\(\frac{x}{y+z-2}\)=\(\frac{y}{z+x-3}\)=\(\frac{z}{x+y+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)-2-3+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\Rightarrow z+y+z=\frac{1}{2}\)Ta có:
\(\frac{x}{y+z+1}=\frac{1}{2}\)
\(\Rightarrow2x=y+z+1\)
\(\Rightarrow y+z=2x-1\)
\(\Rightarrow x+\left(2x-1\right)=\frac{1}{2}\)
\(\Rightarrow x+2x-1=\frac{1}{2}\)
\(\Rightarrow3x-1=\frac{1}{2}\)
\(\Rightarrow3x=\frac{1}{2}+1\)
\(\Rightarrow3x=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{2}:3\)
\(\Rightarrow x=\frac{1}{2}\)
y ;z bạn làm tương tự
- Mình nhầm chỗ \(\frac{x}{y+z+1}\)tí sữa thành \(\frac{x}{y+z+2}\)nhá D
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
ai mua , đổi acc bang bang thì nhắn tin vs tui
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
=>\(\frac{\left(x+y+z\right)2}{x+y+z}=\frac{1}{x+y+z}\)
=> x+y+z=1/2
=> y+z=2x-2
=> x+z=2y-3
=>x+y=2x+5
=> 1/2-x=2x-3
=> x=5/6
=>1/2-y=2y-3
=> y=7/6
=> z=1/2-(7/6+5/6)=-3/2
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{y+x+5}\Rightarrow\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}=\frac{y+z-2+z+x-3+x+y+5}{x+y+z}=2\left(vìx+y+z\ne0\right)\)
\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\left(ĐK:x,y,z\ne0\right)\)
\(\frac{y+z-2}{x}=2\Leftrightarrow2x=y+z-2\Rightarrow3x=x+y+z-2\Rightarrow x=-\frac{1}{2}\)
\(\frac{z+x-3}{y}=2\Rightarrow2y=x+z-3\Rightarrow3y=x+y+z-3\Rightarrow y=-\frac{5}{6}\)
\(\frac{x+y+5}{z}=2\Rightarrow2z=x+y+5\Rightarrow3z=x+z+y+5\Rightarrow z=\frac{11}{6}\)
VẬY \(x=-\frac{1}{2},y=-\frac{5}{6},z=\frac{11}{6}\)