cho tam gicas ABC vuông tại A kẻ đường phân giác AD có g là trọng tâm biết AB và AC tìm GD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABD và tam giác ACD có:
AB=AC
AD(chung)
BAD=CAD(gt)
suy ra tam giác ABD=ACD(c.g.c)
suy ra _ADB=ADC mà ADC+ADB=180 suy ra ADC=ADB=180/2=90
|
-DB=DC=1/2BC=5cm
vì AD là 1 đường trung tuyến của tam giác ABC, G là trọng tâm của tam giác ABC suy ra GD=1/3AD
ta có:\(AD^2=AB^2-BD^2=13^2-5^2=169-25=144\)
\(AD=\sqrt{144}=12\left(cm\right)\)
GD=1/3AD=1/3x12=4(cm)
A B C D E G
Đề bài phải sửa thành AE=ED
a/
Xét tg ABC
DE//AB (gt)
BD=CD (gt)
=> AE=CE (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) (1)
Mà DE=AE (gt) (2)
Từ (1) và (2) => DE=AE=CE (3)
Ta có
BD=CD (gt); AE=CE (cmt) => DE là đường trung bình của tg ABC
\(\Rightarrow DE=\dfrac{AB}{2}\) (4)
Từ (3) và (4) \(\Rightarrow DE=AE=CE=\dfrac{AB}{2}\)
\(\Rightarrow AE+CE=AB\) Mà \(AE+CE=AC\Rightarrow AB=AC\)
=> tg ABC cân tại A
b/
Xét tg ABC có
AD là trung tuyến (gt)
AE=CE (cmt) => BE là trung tuyến
=> G là trọng tâm của tg ABC (Trong tg 3 đường trung tuyến đồng quy tại 1 điểm gọi là trọng tâm của tg)
2) A B C D K H
a) Xét 2 tam giác DHB và tam giác DAB có:
\(\widehat{DAB}=\widehat{DHB}\)
DB là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\Delta DAB=\Delta DHB\left(g-c-g\right)\)
\(\Rightarrow AD=DH\)
b) AB=BH (\(\Delta ADB=\Delta DBH\)
=> tam giác ABH cân tại B ( DB là đường p/g; đường trung tuyến )
=> \(\widehat{KDB}=\widehat{CDB}\)( \(\widehat{CDH}=\widehat{KDA}\)đối đỉnh)
=> \(\widehat{HDB}=\widehat{ADB}\)(theo câu a)
\(\Rightarrow\Delta KDA=\Delta CDH\left(g-c-g\right)\Rightarrow CH=KA\)
=> cạnh CD> cạnh AD (vì CD là cạnh huyền
c) HB=BA và CH=KA
=> KB=BC => tam giác KBC cân tại B